... and how to use them for fun and profit.

Mar. 10, 2009

Collisions in MD5

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction Message-Digest algorithm 5

Differential

cryptanalysis of MD5

Wang's differential path

Deriving a sufficient conditions set Building the collision

Conclusion

Antoine Delignat-Lavaud Computer Science Department, École Normale Supérieure de Cachan

Outline

1 Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction
Message-Digest algorithm 5 (MD5)

2 Differential cryptanalysis of MD5

Wang's differential path
Deriving a sufficient conditions set
Building the collision

3 Conclusion

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5

Wang's differential path
Deriving a sufficient
conditions set
Building the collision

Conclusion

Hash function

Let Σ, Ω be two finite alphabets and n a positive integer. A hash function f is a map :

 $f: \Sigma^* \longrightarrow \Omega^n$

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set Building the collision

Conclusion

Hash function

Let Σ , Ω be two finite alphabets and n a positive integer. A hash function f is a map :

$$f:\Sigma^*\longrightarrow\Omega^n$$

Cryptographic hash functions

In cryptography, a hash function is used to compute the *signature* of an input. As such, it is expected to be :

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses
What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

(MD5) Differential

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set Building the collision

Hash function

Let Σ , Ω be two finite alphabets and *n* a positive integer. A hash function f is a map:

$$f:\Sigma^*\longrightarrow\Omega^n$$

Cryptographic hash functions

In cryptography, a hash function is used to compute the signature of an input. As such, it is expected to be :

Easy to compute for any input

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Hash function

Let Σ , Ω be two finite alphabets and *n* a positive integer. A hash function f is a map:

$$f: \Sigma^* \longrightarrow \Omega^n$$

Cryptographic hash functions

In cryptography, a hash function is used to compute the signature of an input. As such, it is expected to be :

- Easy to compute for any input
- **2** Preimage resistant (given $s \in \Omega^n$, it is hard to find $\omega \in \Sigma^*$ such that $f(\omega) = s$)

Collisions in MD5

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction Message-Digest algorithm 5

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Conclusion

Hash function

Let Σ , Ω be two finite alphabets and *n* a positive integer. A hash function f is a map:

$$f:\Sigma^*\longrightarrow\Omega^n$$

Cryptographic hash functions

In cryptography, a hash function is used to compute the signature of an input. As such, it is expected to be:

- Easy to compute for any input
- 2 Preimage resistant (given $s \in \Omega^n$, it is hard to find $\omega \in \Sigma^*$ such that $f(\omega) = s$)
- 3 Second preimage resistant (given $\omega_1 \in \Sigma^*$, it is hard to find $\omega_2 \neq \omega_1$ such that $f(\omega_1) = f(\omega_2)$

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction Message-Digest algorithm 5

Differential

(MD5)

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Conclusion

Hash function

Let Σ , Ω be two finite alphabets and n a positive integer. A hash function f is a map :

$$f: \Sigma^* \longrightarrow \Omega^n$$

Cryptographic hash functions

In cryptography, a hash function is used to compute the *signature* of an input. As such, it is expected to be:

- 1 Easy to compute for any input
- **2** Preimage resistant (given $s \in \Omega^n$, it is hard to find $\omega \in \Sigma^*$ such that $f(\omega) = s$)
- 3 Second preimage resistant (given $\omega_1 \in \Sigma^*$, it is hard to find $\omega_2 \neq \omega_1$ such that $f(\omega_1) = f(\omega_2)$)
- **4** Collision resistant (it is hard to find $\omega_1, \omega_2 \in \Sigma^*$ such that $f(\omega_1) = f(\omega_2)$)

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses
What is a hash function?

The Merkle-Damgård construction
Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Conclusion

Antoine Delignat-Lavaud

Outline

Hash functions and their uses
What is a hash function?

The Merkle-Damgård

construction
Message-Digest algorithm 5
(MD5)

Differential cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set Building the collision

• Birthday attack : $\mathcal{O}(|\Omega|^{\frac{n}{2}})$

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård

construction
Message-Digest algorithm 5
(MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Conclusion

- Birthday attack : $\mathcal{O}(|\Omega|^{\frac{n}{2}})$
- Brute force can be effective! (up to 1 billion hashes per second on a desktop PC)

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Conclusion

- Birthday attack : $\mathcal{O}(|\Omega|^{\frac{n}{2}})$
- Brute force can be effective! (up to 1 billion hashes per second on a desktop PC)
- MD5 : Ω = {0,1}, n = 128 is too low for current processing power.

```
BarsWF MD5 bruteforcer v0.8
                                    http://3.14.by/en/md5
by Svarychevski Michail
                                    http://3.14.by/ru/md5
   GPHØ:
         266.63 MHash/sec
                               CPUØ:
                                       49.82 MHash/sec
                               CPU1:
                                        49.21 MHash/sec
                               CPU2:
                                       49.42 MHash/sec
                               CPH3:
                                       49.70 MHash/sec
   GPU*:
          266.63 MHash/sec
                               CPU*:
                                      198.15 MHash/sec
                          Avg.Total:
                                      458.82 MHash/sec
Key: wIEoDw
Hash: a9a90f301644f9600b99b2db23f23511
Progress: 23.89 % ETC
                         days
                                 0 hours 1 min 34 sec
 Key is: w9Ec03 ru=
```

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård

construction

Message-Digest algorithm 5
(MD5)

Differential cryptanalysis of MD5

Wang's differential path
Deriving a sufficient
conditions set
Building the collision

Conclusion

Antoine Delignat-Lavaud

Consequences

 MD5-hashed password are easy to crack: at most 2 days for a 68⁸ keyspace using \$500 worth of hardware, a mere 2 more days to crack UNIX's \$1\$-crypt function

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård

construction

Message-Digest algorithm 5
(MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

-

Antoine Delignat-Lavaud

Consequences

- MD5-hashed password are easy to crack: at most 2 days for a 68⁸ keyspace using \$500 worth of hardware, a mere 2 more days to crack UNIX's \$1\$-crypt function
- Derived authentication methods at risk (e.g. CRAM-MD5)

Outline

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Antoine Delignat-Lavaud

Consequences

- MD5-hashed password are easy to crack: at most 2 days for a 68⁸ keyspace using \$500 worth of hardware, a mere 2 more days to crack UNIX's \$1\$-crypt function
- Derived authentication methods at risk (e.g. CRAM-MD5)
- Random collisions, not very significant.

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård

construction

Message-Digest algorithm 5
(MD5)

Differential

cryptanalysis of MD5 Wang's differential path Deriving a sufficient

conditions set

Building the collision

. . .

Consequences

- MD5-hashed password are easy to crack: at most 2 days for a 688 keyspace using \$500 worth of hardware, a mere 2 more days to crack UNIX's \$1\$-crypt function
- Derived authentication methods at risk (e.g. CRAM-MD5)
- Random collisions, not very significant.
- But we want collisions on meaningful data, < 2⁶⁴ calls to the MD5.

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård

construction Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path Deriving a sufficient

conditions set Building the collision

Goals

Compress input: variable length → fixed length

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård

construction

Message-Digest algorithm 5 (MD5) Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Goals

- Compress input : variable length → fixed length
- Balence strength and simplicity

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård

construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Goals

- Compress input : variable length → fixed length
- Balence strength and simplicity
- Strong "avalanche" effect

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential cryptanalysis of MD5

Wang's differential path

Deriving a sufficient conditions set Building the collision

Goals

- Compress input : variable length → fixed length
- · Balence strength and simplicity
- · Strong "avalanche" effect

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction Message-Digest algorithm 5

(MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set

Building the collision

Construction

- $f: \{0,1\}^n \times \{0,1\}^m \longrightarrow \{0,1\}^n$ is the compression function.
- m is the block size, n the digest size
- IV is a fixed initialization vector.
- Length padding is critical for the security of the construction

Properties

 Proven strength: f fix-start collision resistant and fix-start preimage resistant implies cryptographic strength

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function ?

The Merkle-Damgård

construction

Message-Digest algorithm 5 Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Construction

- $f: \{0,1\}^n \times \{0,1\}^m \longrightarrow \{0,1\}^n$ is the compression function.
- m is the block size, n the digest size
- IV is a fixed initialization vector
- Length padding is critical for the security of the construction

Properties

- Proven strength: f fix-start collision resistant and fix-start preimage resistant implies cryptographic strength
- Convenient: single function for the whole process

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function ?

The Merkle-Damgård

construction

Message-Digest algorithm 5 Differential

cryptanalysis of MD5 Wang's differential path Deriving a sufficient

conditions set Building the collision

Construction

- $f: \{0,1\}^n \times \{0,1\}^m \longrightarrow \{0,1\}^n$ is the compression function.
- m is the block size, n the digest size
- IV is a fixed initialization vector
- Length padding is critical for the security of the construction

Properties

- Proven strength: f fix-start collision resistant and fix-start preimage resistant implies cryptographic strength
- Convenient : single function for the whole process
- Can wreak havoc if compression function has collisions

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses
What is a hash function?

The Merkle-Damgård

construction

Message-Digest algorithm 5

Differential

cryptanalysis of MD5

Wang's differential path
Deriving a sufficient
conditions set
Building the collision

Conclusion

Description

Merkle-Damgård based

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set Building the collision

Description

- · Merkle-Damgård based
- n = 128, m = 512

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Conclusion

Description

- Merkle-Damgård based
- n = 128, m = 512
- Designed by Ronald Rivest in 1991

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

(MD5)

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set Building the collision

Conclusion

Description

- Merkle-Damgård based
- n = 128, m = 512
- · Designed by Ronald Rivest in 1991

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction
Message-Digest algorithm 5

(MD5)

cryptanalysis of MD5

Wang's differential path
Deriving a sufficient
conditions set
Building the collision

Conclusion

A round of MD5

Description

- One different non-linear function $F_{k \in [1,4]}$ per round
- 16 operations per round on 32-bit slices $M_{i \in [1,16]}$ of the 512 bit input block.
- A constant K_{i,k} is added at each round and a left bit rotation R_{i,k} is applied

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential cryptanalysis of MD5

Wang's differential path
Deriving a sufficient
conditions set
Building the collision

Conclusion

Algorithm parameters

Non-linear function

$$F_1(X, Y, Z) = (X \land Y) \lor (\neg X \land Z)$$

$$F_2(X, Y, Z) = (X \land Z) \lor (Y \land \neg Z)$$

$$F_3(X, Y, Z) = X \oplus Y \oplus Z$$

$$F_4(X, Y, Z) = Y \oplus (X \lor \neg Z)$$

$K_{i,k}$ "nothing up my sleeve" constants

$$K_{i,k} = \lfloor 2^{32} | \sin(4*(k-1)+i) | \rfloor$$

Initialization vector

 $A_0 = 0 \times 67452301$ $B_0 = 0 \times EFCDAB89$ $C_0 = 0 \times 98BADCFE$

 $D_0 = 0 \times 10325476$

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses
What is a bash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5
Wang's differential path
Deriving a sufficient
conditions set
Building the collision

Differential Cryptanalysis

- Familly of cryptanalysis methods
- Known as early as 1974 by the NSA, published 15 years later!
- Explore how variations in the input translate to the output, "tickle attack"

Differential path and collisions

Message value (M,M') unimportant, only difference
 ΔM = M' - M matters

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses
What is a bash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

(MD5) Differential

cryptanalysis of MD5

Wang's differential path

Deriving a sufficient conditions set Building the collision

Differential Cryptanalysis

- Family of cryptanalysis methods
- Known as early as 1974 by the NSA, published 15 years later!
- Explore how variations in the input translate to the output, "tickle attack"

Differential path and collisions

- Message value (M,M') unimportant, only difference $\Delta M = M' M$ matters
- We search for a sequence of differences Δ_i such that
 ∃i, Δ_i = 0, i.e such that the difference eventually disappear
 after an unspecified number of compressions

Collisions in MD5

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses
What is a bash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

Differential cryptanalysis of MD5

Wang's differential path

Deriving a sufficient conditions set Building the collision

Differential Cryptanalysis

- Family of cryptanalysis methods
- Known as early as 1974 by the NSA, published 15 years later!
- Explore how variations in the input translate to the output, "tickle attack"

Differential path and collisions

- Message value (M,M') unimportant, only difference $\Delta M = M' M$ matters
- We search for a sequence of differences Δ_i such that
 ∃i, Δ_i = 0, i.e such that the difference eventually disappear
 after an unspecified number of compressions
- This sequence of differentials is a roadmap to find the collision

Collisions in MD5

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses

What is a bash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

Differential cryptanalysis of MD5

Wang's differential path

Deriving a sufficient conditions set Building the collision

Differential Cryptanalysis

- Family of cryptanalysis methods
- Known as early as 1974 by the NSA, published 15 years later!
- Explore how variations in the input translate to the output, "tickle attack"

Differential path and collisions

- Message value (M,M') unimportant, only difference $\Delta M = M' M$ matters
- We search for a sequence of differences Δ_i such that ∃i, Δ_i = 0, i.e such that the difference eventually disappear after an unspecified number of compressions
- This sequence of differentials is a roadmap to find the collision
- ... but they're hard to find

Collisions in MD5

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses

What is a bash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

Differential cryptanalysis of MD5

Wang's differential path

Deriving a sufficient conditions set

Building the collision

Exploiting a differential path

getting lucky

Collisions in MD5

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction
Message-Digest algorithm 5

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Multi-bloc differential path

Wang et al. differential path construction

We consider a more general problem : find (M_0, M_0') , (M_1, M_1') such that we have for any IHV_k :

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5

Wang's differential path

Deriving a sufficient conditions set Building the collision

How to differentiate smartly

Collisions in MD5

Delignat-Lavaud

Differential notations

- M' denotes the collistion dual message of M
- $\Delta X = X' X$ where denotes integer modular difference
- Applies to 32-bit components, e.g $\Delta IHV = (\Delta A, \Delta B, \Delta C, \Delta D)$
- $+2^{15} 2^8$ means bit 15 flipped from 0 to 1 and bit 8 flipped from 1 to 0

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5
Wang's differential path

Deriving a sufficient

conditions set
Building the collision

Wang's collision path

	$\delta m_4 = +2^{31}$, $\delta m_{11} = +2^{15}$, $\delta m_{12} = +2^{15}$	$a_{14} = +2^{31}$, δm	t = 0.	$i \notin \{4, 11, 14\}$			$\delta m_4 = -2^{31}, \delta m_{11} = -2^{15},$	$\delta m_{14} = -2^{31}$, δr	$n_i = 0$,	$i \notin \{4, 11, 14\}$	
						t	ΔQ_t (BSDR of δQ_t)	δF_t	δως	δT_t	RC_t
t	ΔQ_t (BSDR of δQ_t)	δF_t	δw_t	δT_t	RC_t	-3	+2**	×	×	×	×
0 - 3	-	-	-	-		-2	+225+251	×	×	×	×
4	-	-	2^{31}	231	7	-1	-2 ²⁵ +2 ²⁶ +2 ⁹¹ +2 ²⁵ +2 ⁹¹	× 2*1	×	×	× 7
5	+2 ⁶ +2 ²¹ 2 ²²	211+219	-	211+219	12	1	+2**+2**	281	-		12
- 6	$-2^{6}+2^{23}+2^{31}$	$-2^{10}-2^{14}$	-	-210-214	17	2	+25+255+288	225	-	281+226	17
7	+20+2425.+26+210	$-2^{2}+2^{5}+2^{10}$	-	$-2^{2}+2^{5}+2^{10}$	22	3	-2 ⁵ -2 ⁶ +2 ⁷ -2 ¹¹ +2 ¹²	$-2^{11}-2^{21}+2^{25}$	-	-211-221-226	22
'	$-2^{11}, -2^{23}, \dots -2^{25}, +2^{26}, \dots +2^{31}$	$+2^{16}-2^{25}-2^{27}$		$+2^{16}-2^{25}-2^{27}$	**		$-2^{16} \dots -2^{29}, +2^{21} \\ -2^{25} \dots -2^{29}, +2^{99}+2^{91}$	$-2^{27}+2^{31}$			
8	+2"+215-216+217	26+28+210	-	28+210+216	7	4	+21+22+28-24+25	21-25-218	281	21+22-218	7
	+2 ¹⁸ +2 ¹⁹ -2 ²⁰ -2 ²³	$+2^{16}-2^{24}+2^{31}$		$-2^{24}+2^{31}$		"	$-2^{25}+2^{26}+2^{81}$	$+2^{26}+2^{90}$	1	+225+226+290	1 '
9	$-2^{0}+2^{1}+2^{6}+2^{7}-2^{8}-2^{31}$	$2^{0}+2^{6}-2^{20}$	-	$2^{0}-2^{20}+2^{26}$	12	5	+20-20+27+28-20	-24-25-28-230	-	-2 ⁴ -2 ⁸ -2 ²⁰	12
		$-2^{23}+2^{26}+2^{31}$					-219-211+212+291	$-2^{25}-2^{26}+2^{26}+2^{60}$		-2 ²⁶ +2 ²⁶ -2 ⁶⁰ 2 ⁵ -2 ¹⁰ -2 ²¹ -2 ⁸¹	
10	-2 ¹² +2 ¹³ +2 ³¹	20+26+213-223	-	213-227	17	6	+216-217+290-221+251	25-25-210-211 -210-221-225	-	2"-2"-2"-2"	17
11	+230+231	$-2^{6}-2^{8}$	215	$-2^{8}-2^{17}-2^{23}$	22	7	+2"+2"+2"-2"	216-227+291	-	-21+25+216	22
12	+27-28,+213+218,-219+231	27+217+231	-	20+26+217	7		+2 ²⁷ -2 ²⁸ +2 ⁸¹			$+2^{25}-2^{27}$	
13	$-2^{24}+2^{25}+2^{31}$	$-2^{13}+2^{31}$	-	-2^{12}	12	8	$-2^{15}+2^{16}-2^{17}+2^{28}$ $+2^{24}+2^{25}-2^{26}+2^{31}$	-2 ⁶ +2 ¹⁶ +2 ²⁵	-	2°+2°+2° +2°+2°5-2°°	7
14	+231	2 ¹⁸ +2 ³¹	2^{31}	$2^{18}-2^{90}$	17	9	-2°+21,-2°28,+2°+281	20+216-226+281	-	28-220-220	12
15	+23-215+231	2 ²⁵ +2 ³¹	-	$-2^{7}-2^{13}+2^{25}$	22	10	+212+201	26+251	-	-227	17
16	$-2^{29}+2^{31}$	231	-	224	5	11	+290	2*1	-2^{15}	-217-229	22
17	+231	231	-	-	9	12	-2 ⁷ , +2 ¹⁸ +2 ¹⁸ -2 ¹⁹ +2 ⁸¹	217+281	-	20+26+217	7
18	+231	231	215	23	14	13	-224229,+298+291	-2 ¹⁵ +2 ⁵¹	-	-212	12
19	+217+231	231	-	-229	20	14	+2** +2*+2**+2**	2 ¹⁸ +2 ⁹⁰ -2 ²⁵ +2 ⁵¹	251	2 ¹⁸ +2 ⁹⁹ -2 ⁷ -2 ¹³ -2 ²⁵	17
20	+231	231	-		5	15	+2"+2""+2"" -2 ²⁹ ±2 ⁸¹	-2 ⁴⁴ +2 ⁷¹	-	27-27-27-	22
21	+231	231	-	_	9	17	+211	251	-	-	9
22	+231	231	-	217	14	18	+288	251	-215	28	14
23	T4		231	-	20	19	+217+251	251	-	-229	20
24	_	231	-		5	20	+2**	2*1	-	-	5
25	-		231	_	9	21	+2**	2 ⁸¹ 2 ⁸¹	-	917	9
	_		2	_	9	22	+2**	2"	201	2"	14
26 - 33	-	-	-	-		24	-	251	-	-	5
34	-	-	215	215	16	25	-	-	251	_	9
35	$\delta Q_{35} = 2^{31}$	231	2^{31}	-	23	26 - 33	-	-	-	-	
36	$\delta Q_{36} = 2^{31}$	-	-	-	4	34	_	_	-2^{15}	-215	16
37	$\delta Q_{37} = 2^{31}$	231	2^{31}	-	11	35	$\delta Q_{95} = 2^{91}$	2*1	251	-	23
38 - 49	$\delta Q_t = 2^{31}$	231	-	-		36	$\delta Q_{36} = 2^{81}$	211	-	-	4
50	$\delta Q_{50} = 2^{31}$	-	2^{31}	-	15	37	$\delta Q_{87} = 2^{81}$ $\delta Q_t = 2^{91}$	251	281	-	11
51 - 59	$\delta Q_t = 2^{31}$	231	-	-		38 - 49	$\delta Q_t = 2^{nt}$ $\delta Q_{20} = 2^{81}$	2"	281	-	15
60	$\delta Q_{60} = 2^{31}$		231	_	6	51 - 59	$\delta O_4 = 2^{81}$	251	-	-	
	$\delta Q \epsilon_1 = 2^{31}$	231	215	215		60	$\delta Q_{60} = 2^{51}$	-	251	-	6
61	$\delta Q_{61} = 2^{31}$ $\delta Q_{62} = 2^{31} + 2^{25}$	231			10	61	$\delta Q_{61} = 2^{81}$	251	-2^{15}	-215	10
	$\delta Q_{62} = 2^{31} + 2^{25}$	231	-	-	15	62	$\delta Q_{62} = 2^{51} - 2^{25}$	2*1	-	-	15
63	$\delta Q_{63} = 2^{31}+2^{25}$		-	-	21	63	$\delta Q_{48} = 2^{91} - 2^{25}$	251	-	-	21
64	$\delta Q_{64} = 2^{31}+2^{25}$	×	×	×	×	64	$\delta Q_{64} = 2^{81} - 2^{25}$	×	×	×	×

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Exploiting Wang's path

Sufficient conditions

 Once a valid path is found (Wang did it "by hand", relying only on intuition!), we must build a pair of blocks that follows it

Symbol	State condition $Q_t[i]$
	none
0	$Q_t[i] = 0$
1	$Q_t[i] = 1$
^	$Q_t[i] = Q_{t-1}[i]$
!	$Q_t[i] = \neg Q_{t-1}[i]$

Collisions in MD5

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Exploiting Wang's path

Sufficient conditions

- Once a valid path is found (Wang did it "by hand", relying only on intuition!), we must build a pair of blocks that follows it
- Sufficient set of bit conditions for the path to hold on a block derived from path

Symbol	State condition $Q_t[i]$
	none
0	$Q_t[i] = 0$
1	$Q_t[i] = 1$
^	$Q_t[i] = Q_{t-1}[i]$
!	$Q_t[i] = \neg Q_{t-1}[i]$

Antoine Delignat-Lavaud

Outline

(MD5)

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Exploiting Wang's path

Sufficient conditions

- Once a valid path is found (Wang did it "by hand", relying only on intuition!), we must build a pair of blocks that follows it
- Sufficient set of bit conditions for the path to hold on a block derived from path
- Wang proposed a set of conditions derived by hand, she made mistakes

Symbol	State condition $Q_t[i]$
	none
0	$Q_t[i] = 0$
1	$Q_t[i] = 1$
^	$Q_t[i] = Q_{t-1}[i]$
!	$Q_t[i] = \neg Q_{t-1}[i]$

Outline

(MD5)

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Automated sufficient conditions derivation

 Contruct sufficient conditions to control output of non-linear F_i function

Simplified algorithm

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5
Wang's differential path

Deriving a sufficient conditions set

Building the collision

Automated sufficient conditions derivation

- Contruct sufficient conditions to control output of non-linear F_i function
- Construct conditions to control carry length

Simplified algorithm

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction Message-Digest algorithm 5

(MD5) Differential

cryptanalysis of MD5

Wang's differential path Deriving a sufficient

conditions set Building the collision

Automated sufficient conditions derivation

- Contruct sufficient conditions to control output of non-linear F_i function
- Construct conditions to control carry length
- Rotations are still handled by hand, or by a SAT solver

Simplified algorithm

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set

Building the collision

Automated sufficient conditions derivation

- Contruct sufficient conditions to control output of non-linear F_i function
- Construct conditions to control carry length
- Rotations are still handled by hand, or by a SAT solver
- · Differentials in the outermost rounds are examined first

Simplified algorithm

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set

Building the collision

Automated sufficient conditions derivation

- Contruct sufficient conditions to control output of non-linear F_i function
- Construct conditions to control carry length
- Rotations are still handled by hand, or by a SAT solver
- · Differentials in the outermost rounds are examined first

Simplified algorithm

• Find candidate ΔF_i that satisfies input differential with highest probability to maintain the path

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses
What is a bash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

(MD5)

Differential

cryptanalysis of MD5
Wang's differential path

Deriving a sufficient conditions set Building the collision

sullaing the collisio

Automated sufficient conditions derivation

- Contruct sufficient conditions to control output of non-linear F_i function
- Construct conditions to control carry length
- Rotations are still handled by hand, or by a SAT solver
- · Differentials in the outermost rounds are examined first

Simplified algorithm

- Find candidate ΔF_i that satisfies input differential with highest probability to maintain the path
- · Set "chaining" differentials to prevent carries

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5
Wang's differential path

Deriving a sufficient conditions set Building the collision

dilding the comsio

Automated sufficient conditions derivation

- Contruct sufficient conditions to control output of non-linear F_i function
- Construct conditions to control carry length
- Rotations are still handled by hand, or by a SAT solver
- Differentials in the outermost rounds are examined first

Simplified algorithm

- Find candidate ΔF_i that satisfies input differential with highest probability to maintain the path
- Set "chaining" differentials to prevent carries
- Derive conditions to control ΔF_i from first to last bit. If a contradiction arises, backtrack

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function ?

The Merkle-Damgård construction Message-Digest algorithm 5

(MD5) Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

- $F(X, Y, Z) = (X \wedge Y) \vee (\neg X \wedge Z)$
- We want $\Delta Q_{i-1} = \Delta Q_{i-2} = 0$, $\Delta Q_{i-3} = 2^5$. $\Delta F(Q_{i-1}, Q_{i-2}, Q_{i-3}) = 2^7$
- State equation : $\Delta F(Q_{i-1}, Q_{i-2}, Q_{i-3})$ is $R_i(\Delta Q_i - \Delta Q_{i-1}) - \Delta M_i - \Delta K_i - \Delta Q_{i-4}$
- $\Delta F(Q_{i-1}, Q_{i-2}, Q_{i-3}) = 2^7$ is impossible (no differential on 8th bit)
- So we add a bit differential in position 8 by expanding carry in $\Delta Q_{i-3} = 2^5$
- We add conditions Q_{i-3}[1₆, 1₇, 0₈]
- Now we have differentials in bit 6 and 7 that ΔF hasn't. Fortunately, F doesn't have differentials if bits 6 and 7 are set
- Furthermore, $Q_{i-3}[0_8]$ yields $\Delta F(Q_{i-1}, Q_{i-2}, Q_{i-3}) = 2^7$, so we have our conditions.

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction Message-Digest algorithm 5

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set Building the collision

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction
Message-Digest algorithm 5

Differential

(MD5)

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set

Building the collision

Conclusion

Chosen prefix

Can't eliminate any IVH_k

Chosen prefix

- Can't eliminate any IVH_k
- Can eliminate $\triangle IVH_k = (0, \triangle B, \triangle B, \triangle B)$

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction
Message-Digest algorithm 5

(MD5)

Differential

cryptanalysis of MD5

Wang's differential path
Deriving a sufficient
conditions set

Building the collision

Chosen prefix

- Can't eliminate any IVH_k
- Can eliminate $\triangle IVH_k = (0, \triangle B, \triangle B, \triangle B)$
- Birthday attach on previous block can lead to IHV of the correct form

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path

Deriving a sufficient conditions set

Building the collision

Chosen prefix

- Can't eliminate any IVH_k
- Can eliminate $\triangle IVH_k = (0, \Delta B, \Delta B, \Delta B)$
- Birthday attach on previous block can lead to IHV of the correct form
- Few changes in the blocks before the collision block allow collisions on meaningful data

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5 Wang's differential path Deriving a sufficient conditions set

Building the collision

Antoine Delignat-Lavaud

Collisions in MD5

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård
construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5
Wang's differential path

Wang's differential path Deriving a sufficient conditions set

Building the collision

Conclusion

Chosen prefix

Can't eliminate any IVH_k

- Can eliminate $\triangle IVH_k = (0, \triangle B, \triangle B, \triangle B)$
- Birthday attach on previous block can lead to IHV of the correct form
- Few changes in the blocks before the collision block allow collisions on meaningful data
- Only a few bits are changed in the two 512-bit collision blocks

Collision algorithm

• Birthday attack previous blocks at the least suspicious place have a good ΔIHV

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?
The Merkle-Damgård construction
Message-Digest algorithm 5

(MD5)

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set

Building the collision

Collision algorithm

- Birthday attack previous blocks at the least suspicious place have a good ΔIHV
- Chose arbitrary block pair that meets all suficient conditions for the first round.

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function? The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set

Building the collision

Collision algorithm

- Birthday attack previous blocks at the least suspicious place have a good ΔIHV
- Chose arbitrary block pair that meets all suficient conditions for the first round.
- Apply compression function while sufficient conditions are met.

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

(MD5) Differential

cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set

Building the collision

Collision algorithm

- Birthday attack previous blocks at the least suspicious place have a good ΔIHV
- Chose arbitrary block pair that meets all suficient conditions for the first round.
- Apply compression function while sufficient conditions are met.
- If a condition is not met in a relatively deep state of the function, try to patch the block you're building using message modification (precomputed modification that do not broke previous conditions for this path) or tunneling (backtrack to the first neutral bit and pray)

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a hash function?

The Merkle-Damgård construction

Message-Digest algorithm 5

(MD5) Differential

cryptanalysis of MD5 Wang's differential path Deriving a sufficient conditions set

Building the collision

An impressive breach

Random-looking versus constructed

- Back in 1991, MD5 was designed using intuition rather than theory
- Using simple techniques and intuition, it was possible to find weak diffusion paths and exploit them
- Rivest has learned his lesson, SHA-3 candidate MD6 is proven secure against differential attacks
- Sequential approach replaced by parallel, tree-based scheme

Serious security implications

- · Integrity bypassed in a minute
- Digital signature no longer to be trusted
- Fortunately complex enough to discourage real world attacks

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses

What is a bash function?

The Merkle-Damgård construction

Message-Digest algorithm 5 (MD5)

Differential cryptanalysis of MD5

Wang's differential path
Deriving a sufficient
conditions set
Building the collision

References

Collisions in MD5

Antoine Delignat-Lavaud

Outline

Hash functions and their uses What is a hash function?

The Merkle-Damgård construction Message-Digest algorithm 5 (MD5)

Differential cryptanalysis of MD5

Wang's differential path Deriving a sufficient conditions set

Building the collision

M. Stevens On collisions for MD5. Eindhoven University, 2007

🔪 Xiaoyun Wang, Hongbo Yu How to Break MD5 and Other Hash Functions. Shandong University, 2005