
Implementing and Proving the TLS 1.3 Record Layer
Karthikeyan Bhargavan∗ Antoine Delignat-Lavaud† Cédric Fournet†

Markulf Kohlweiss† Jianyang Pan∗ Jonathan Protzenko† Aseem Rastogi†

Nikhil Swamy† Santiago Zanella-Béguelin† Jean Karim Zinzindohoué∗

December 30, 2016

Abstract

The record layer is the main bridge between TLS applications and internal sub-protocols. Its core
functionality is an elaborate authenticated encryption: streams of messages for each sub-protocol (hand-
shake, alert, and application data) are fragmented, multiplexed, and encrypted with optional padding
to hide their lengths. Conversely, the sub-protocols may provide fresh keys or signal stream termination
to the record layer.

Compared to prior versions, TLS 1.3 discards obsolete schemes in favor of a common construction for
Authenticated Encryption with Associated Data (AEAD), instantiated with algorithms such as AES-
GCM and ChaCha20-Poly1305. It differs from TLS 1.2 in its use of padding, associated data and nonces.
It encrypts the content-type used to multiplex between sub-protocols. New protocol features such as
early application data (0-RTT and 0.5-RTT) and late handshake messages require additional keys and
a more general model of stateful encryption.

We build and verify a reference implementation of the TLS record layer and its cryptographic algo-
rithms in F?, a dependently typed language where security and functional guarantees can be specified
as pre- and post-conditions. We reduce the high-level security of the record layer to cryptographic as-
sumptions on its ciphers. Each step in the reduction is verified by typing an F? module; when the step
incurs a security loss, this module precisely captures the corresponding game-based security assumption.

We first verify the functional correctness and injectivity properties of our implementations of one-
time MAC algorithms (Poly1305 and GHASH) and provide a generic proof of their security given these
properties. We show the security of AEAD given any secure one-time MAC and PRF. We extend
AEAD, first to stream encryption, then to length-hiding, multiplexed encryption. Finally, we build
a security model of the record layer against an adversary that controls the TLS sub-protocols. We
compute concrete security bounds for the AES-GCM and ChaCha20-Poly1305 ciphersuites, and derive
recommended limits on sent data before re-keying. Combining our functional correctness and security
results, we obtain the first verified implementations of the main TLS 1.3 record ciphers.

We plug our implementation of the record layer into an existing TLS library and confirm that the
combination interoperates with Chrome and Firefox, and thus that experimentally the new TLS record
layer (as described in RFCs and cryptographic standards) is provably secure.

∗INRIA Paris-Rocquencourt. E-mail: karthikeyan.bhargavan@inria.fr, panyang314@gmail.com, jean-karim.zinzin-
dohoue@inria.fr
†Microsoft Research. E-mail: {antdl,fournet,markulf,protz,aseemr,nswamy,santiago}@microsoft.com

1

1 Introduction

Transport Layer Security (TLS) is the main protocol for secure communications over the Internet. With
the fast growth of TLS traffic (now most of the Web [51]), numerous concerns have been raised about its
security, privacy, and performance. These concerns are justified by a history of attacks against deployed
versions of TLS, often originating in the record layer.
History and Attacks Wagner and Schneier [52] report many weaknesses in SSL 2.0. The MAC construc-
tion offers very weak security regardless of the encryption strength. The padding length is unauthenticated,
allowing an attacker to truncate fragments. Stream closure is also unauthenticated; although an end-of-
stream alert was added in SSL 3.0, truncation attacks persist in newer TLS versions [13, 47].

The MAC-pad-encrypt mode is not generically secure [33], and is brittle in practice, despite encouraging
formal results [2, 12, 42]. Many padding oracle attacks have surfaced over the years, ranging from attacks
exploiting straightforward issues (e.g. implementations sending padding error alerts) to more advanced
attacks using side channels (such as Lucky13 [1] or POODLE [40]). Even though padding oracle attacks
are well known, they remain difficult to prevent in TLS implementations and new variants tend to appear
regularly [48]. The CBC mode of operation is also not secure against chosen-plaintext attacks when the
IV is predictable (as in TLS 1.0), which is exploited in the BEAST attack [22]. Random explicit IVs [16]
and CBC for 64-bit block ciphers mode [11] are also vulnerable to birthday attacks. Finally, fragment
compression can be exploited in adaptive chosen plaintext attacks to recover secrets [43].

Even with provably-secure algorithms, functional correctness and memory safety are essential to preserve
security guarantees that implementation bugs can easily nullify. For instance, the OpenSSL implementation
of Chacha20-Poly1305 has been found to contain arithmetic flaws [15] and more recently, a high severity
buffer overflow vulnerability [50].
Changes in TLS 1.3 The IETF aims to robustly fix the weaknesses of the record layer by adopting a single
AEAD mode for all ciphersuites, thus deprecating all legacy modes (MAC-only, MAC-pad-encrypt, RFC
7366 [28] encrypt-then-MAC, compress-then-encrypt). The new AEAD mode is designed to be provably-
secure and modular, supporting algorithms such as AES-GCM, AES-CCM, and ChaCha20-Poly1305 within
the same framework. The usage of AEAD has also been improved: authentication no longer relies on
associated data, whereas implicit nonces derived from initialization vectors (IV) and sequence numbers
yield better security and performance.
What is the Record Layer? In the key exchange literature, a common viewpoint is to treat each key
generated in the key schedule as belonging to a specific, independent application. Under this model, the
handshake encryption key is only used by the handshake to encrypt its own messages, and must be separate
from the application data key used only to encrypt application data fragments. This model does not fit
the actual use of keys in any version of TLS: it fails to capture TLS 1.2 renegotiation (where handshake
messages are interleaved with the application data stream), TLS 1.3 post-handshake authentication and
re-keying, or even alerts in any TLS version. In our modularization of TLS, following Bhargavan et al. [12],
we consider that each sub-protocol of TLS—handshake, change cipher spec (CCS), alert and application
data (AppData)—defines its own data stream. The role of the record is to multiplex all of these streams into
one, corresponding to network messages after fragmentation, formatting, padding, and optional record-layer
encryption. Under this model, the record layer is the exclusive user for all non-exported keys generated by
the key schedule, and there is no need to assign keys to any given sub-protocol stream.

Figure 1 illustrates the stream multiplexing for a TLS 1.3 handshake with 0-RTT data and one re-
keying from the point of view of the client. Separate channels are used for writing and reading. Within
each channel, a band in the figure represents a stream, and arrows represent message fragments (incoming

2

Key 2 Key 3

Key 3Key 1Key 0 (1 sided)

Handshake

AppData

Alert

Plaintext

Handshake

AppData

Alert

Plaintext Key 1

Write channel

Read channel

Key 2

Figure 1: Multiplexing of sub-protocol streams by the record layer, depicting a TLS 1.3 0-RTT handshake
with re-keying.

for left arrows, outgoing for right arrows) over time (flowing from left to right). Dashed arrows represent
fragments used to signal key changes to the record layer. In TLS 1.2, CCS messages signal key changes; in
TLS 1.3 this function is taken over by handshake and alert messages.
Related Work Since the first draft of TLS 1.3 in April 2014, the handshake and key schedule have
undergone significant analysis efforts [18, 20, 25, 30, 31, 35] as it evolved over 18 iterations (at the time
of writing). In contrast, few authors have analyzed changes to the record layer: Fischlin et al. [24] and
Badertscher et al. [3] analyze an early draft that did not feature many of the current changes (for instance, it
still relied on associated data to authenticate record meta-data), and Bellare and Tackmann [7] specifically
focus on the way nonces are derived from IVs. This discrepancy may be explained by the difficulty of
analyzing the record independently of the handshake protocol, and more generally, of defining the precise
scope of its functionality.

As noted by several authors [21, 29], TLS occasionally uses the same keys to encrypt handshake messages
and application data, e.g., for finished and post-handshake messages. This, unless carefully modeled in
a custom security model [12] breaks key-indistinguishability. Authenticated and Confidential Channel
Establishment (ACCE) [29, 36] is a game-based model that combines the handshake and the record protocols
to preempt these composition problems. While ACCE models capture complex features of TLS such
as renegotiation [27], its focus is primarily on the handshake, and it is unclear how to capture features
such as post-handshake authentication [21]. Other limits of ACCE models are discussed in [3]. A recent
paper by Krawczyk [34] proposes a new security definitions based on a key usability [19] rather than key
indistinguishability to address this challenge.
Our contributions We contribute a reference implementation of the TLS record layer and its underlying
cryptographic algorithms. We define its security as an indistinguishability game and we show a reduction
with concrete bounds (Table 1) for any distinguisher to standard, low-level cryptographic assumptions. Our
proof follows the structure depicted in Figure 2; from the bottom up:

1. We build a generic library for one-time message authentication codes (MAC) based on the Wegman-
Carter-Shoup construction. We implement GHASH and Poly1305, and prove the functional correct-
ness (w.r.t. mathematical specifications), memory safety, and encoding injectivity of the corresponding
low-level implementations (§3). Similarly, we build a library for pseudo-random functions (PRF), and

3

Record

LHSE

StAE

AEAD

PRF MAC Verified
Crypto	 library

Generic	AEAD	construction

Stream	Encryption	 with
sequence	numbers

Length-Hiding	 (padded)
Multiplexed	 Streams

Sequence	 of	streams
keyed	by	Handshake	

ChaCha20AES Poly1305GHASH

Handshake/Alert Application	

fragments: d0,	d1,	d2keys:	
k0,	k1,…

TLS	specific

Generic

Figure 2: Modular structure of our proof. Green arrows denote security reductions proved by typing.

provide memory-safe implementations for AES and Chacha20 (§4). We express the security guarantees
of both libraries as idealizations that we justify cryptographically.

2. We describe a generic AEAD construction that captures both RFC 5288 [44] for AES-GCM (as de-
scribed in NIST SP800-38D [23]) and RFC7539 [41] for ChaCha20-Poly1305 through an interface
compatible with RFC5116 [39]. We show that this construction satisfies a standard notion of AEAD
security (§5) that combines indistinguishability under chosen-plaintext attacks (IND-CPA) with ci-
phertext integrity (INT-CTXT). Our proof applies to our F? implementation, and is verified by typing
from these libraries upward.

3. From AEAD, we build and verify stream encryption, which uses AEAD nonces and record sequence
numbers according to the TLS version-specific format (§6).

4. From stream encryption, we build a length-hiding encryption interface by adding padding, the TLS-
specific content type multiplexing, and version-specific associated data (§7).

5. From length-hiding stream encryption with multiplexing, we implement the TLS record layer by
adding interfaces to the handshake and alert sub-protocols that extend streams to sequences of streams
by installing and enabling keys (§8). This captures novel protocol features of TLS 1.3 such as early
application data (0-RTT and 0.5 RTT), late handshake messages, and re-keying. Based on our security
bound, we propose a re-keying strategy that compensates for potential weaknesses in AES-GCM.

6. We evaluate our implementation of the TLS record layer (§9) by linking our AES-GCM and ChaCha20-
Poly1305 ciphersuites to the handshake implementation of miTLS [12]. We confirm network interop-
erability with other TLS libraries both for TLS 1.2 and draft 18 of TLS 1.3. Our code and formal
development maximize reuse between TLS 1.2 and 1.3.

Additional Materials This work is part of a larger project (https://project-everest.github.io/)
which aims to build and deploy a verified secure HTTPS stack. The code presented in the paper is split

4

https://project-everest.github.io/

between several open-source projects, listed below. For convenience, a script available from git clone
https://github.com/project-everest/everest --branch record-layer-tr installs these projects and
points to the relevant code version.

• The F? programming language: https://github.com/FStarLang/FStar/ including libraries and
sample code, notably our verified code for the AEAD algorithms and constructions. We also rely
on a new compiler from F? to C code, available at https://github.com/FStarLang/kremlin.

• A new version of miTLS, extended to TLS 1.3, implemented in F?: https://github.com/mitls/
mitls-fstar/. While verification of the full codebase is in progress, our repository contains verified
protocol-specific code for the record layer fragment reported in this paper.

• The HACL? cryptographic library: https://github.com/mitls/hacl-star/ including verified im-
plementations for additional algorithms, as well as standalone security applications.

2 Compositional Verification by Typing

To implement and verify the record layer, we adopt a compositional approach to functional correctness and
cryptographic security based on F? [49], a dependently-typed programming language. This section explains
our approach on two examples: arithmetic in a prime field used in Poly1305, and basic authenticated
encryption. We refer the reader to [26] for a general presentation of this approach and [4] for a probabilistic
semantics of F? and additional cryptographic examples.

We use F? not only to implement cryptographic constructions, but also as the formal syntax for their
game-based security specifications. This is akin to the approach taken by Bhargavan et al. [14] in their proof
of a TLS 1.2 handshake implementation using F7, an ancestor of F?. In contrast to F7, F? supports an
effectful programming style that is more efficient and closer to the cryptographic pseudo-code of code-based
games [5]. For most of the presentation we use such pseudo-code instead of more precise and verbose
F? code. We do not assume familiarity with F? and we use a simplified syntax that elides many details,
especially in type annotations that are not relevant for the developments in this paper.
Functional Correctness of Poly1305 In F?, we specify arithmetic in the field GF (2130 − 5) for the
Poly1305 MAC algorithm as follows:

val p = 2^130 − 5 (∗ the prime order of the field ∗)
type elem = n:nat {n < p} (∗ abstract field element ∗)
let x +@ y : Tot elem = (x + y) % p (∗ field addition ∗)
let x ∗@ y : Tot elem = (x ∗ y) % p (∗ field multiplication ∗)

This code uses F? infinite-precision mathematical integers to define the prime order p of the field and
the type of field elements. (The formula {n < p} states that this type is inhabited by natural numbers n
smaller than p.) It also defines two infix operators for addition and multiplication in the field in terms
of arithmetic on infinite-precision integers. Their result is annotated with Tot elem, to indicate that these
operations are pure total functions that return field elements. The F? typechecker automatically checks
that the result is in the field; it would trigger an error if e.g. we omitted the reduction modulo p. These
operations are convenient to specify polynomial computations (see §3.2) but highly inefficient.

Instead, typical 32-bit implementations of Poly1305 represent field elements as mutable arrays of 5
unsigned 32-bit integers, each holding 26 bits. This representation evenly spreads out the bits across the
integers, so that carry-overs during arithmetic operations can be delayed. It also enables an efficient modulo

5

https://github.com/FStarLang/FStar/
https://github.com/FStarLang/kremlin
https://github.com/mitls/mitls-fstar/
https://github.com/mitls/mitls-fstar/
https://github.com/mitls/hacl-star/

operation for p. We show below an excerpt of the interface of our lower-level verified implementation, relying
on the definitions above to specify their correctness.

abstract type repr = buffer UInt32.t 5 (∗ 5-limb representation ∗)
val select: memory → r:repr → Tot elem (∗ current value held in r ∗)

val multiply: e0:repr → e1:repr → ST unit
(requires live e0 ∧ live e1 ∧ disjoint e0 e1)
(modifies e0)
(ensures select e0′ = select e0 ∗@ select e1)

The type repr defines the representation of field elements as buffers (mutable arrays) of 5 32-bit integers.
It is marked as abstract, to protect the representation invariant from the rest of the code. Functions are
declared with a series of argument types (separated by →) ending with a return type and an effect (e.g.
Tot or ST). Functions may have logical pre- and post-conditions that refer to their arguments, their result,
and their effects on the memory. If they access buffers, they typically have a pre-condition requiring their
caller to prove that the buffers are ‘live’ in the current memory. They also explicitly state which buffers
they modify.

The total function select is used only in specifications; it reads the value of an element from the program
memory. We use it, for example, in the stateful specification of multiply. In the types above, we keep the
memory argument implicit, writing select e and select e′ for the values of e in initial and final memories,
respectively. (In real F? code, pre- and post-conditions take these memories as explicit arguments.)

The multiply function is marked as ST, to indicate a stateful computation that may use temporary stack-
based allocations. It requires that its arguments e0 and e1 be live and disjoint; it computes the product of
its two arguments and overwrites e0 with the result. Its post-condition specifies the result in terms of the
abstract field multiplication of the arguments.

Implementing and proving that multiply meets its mathematical specification involves hundreds of lines of
source code, including a custom Bignum library with lemmas on integer representations and field arithmetic
(see §9). Such code is easy to get wrong, but once F? typechecks it, we are guaranteed that our low-level
code is safe (e.g. it never accesses buffers out of bound, or de-allocated buffers) and functionally correct
(since their results are fully specified). All F? types and specifications are then erased, hence the compiled
code only performs efficient low-level operations.
Authenticated Encryption: Real Interface Let us consider a simplified version of the authenticated
encryption (AE) functionality at the core of the TLS record layer. In F?, we may write an AE module with
the following interface:

val `p: nat
val `c: nat
type lbytes (`:nat) = b:bytes{length b = `}
type bbytes (`:nat) = b:bytes{length b ≤ `}
type plain = lbytes `p
type cipher = lbytes `c
abstract type key
val keygen: unit → ST key
val decrypt: key → cipher → Tot (option plain)
val encrypt: k:key → p:plain → ST (c:cipher{decrypt k c = Some p})

Plaintexts and ciphertexts are represented as immutable bytestrings of fixed lengths `p and `c. We
frequently rely on type abbreviations to statically enforce length checks for fixed-length bytestrings using

6

lbytes `, and for bounded-length bytestrings using bbytes `. (Our presentation uses immutable bytestrings
for simplicity, whereas our record-layer implementation also uses mutable buffers of bytes.)

The interface defines an abstract type key; values of this type can only be generated via keygen and
accessed via encrypt and decrypt. The internal representation of keys is hidden from all other modules to
protect their integrity and secrecy.

The function keygen needs to generate randomness by calling an effectful external function; so we give
this function the ST effect to indicate that the computation is impure and stateful (even though it does
not explicitly modify the memory.) In particular, two calls to keygen may result in different results. The
function encrypt would typically generate a nonce for use in the underlying AE construction, and hence is
also marked as stateful. In contrast, decrypt is deterministic, so is marked with the Tot effect. Its result is
an optional plain: either Some p if decryption succeeds, or None otherwise.

Our interface does not express any security guarantees yet, but it does require a functional correctness
guarantee, namely that decryption undoes encryption. Besides, the F? type system implicitly checks for
memory safety and integer overflows.
Authenticated Encryption: Security Given an implementation of AE, one usually measures its con-
crete security as the advantage of an adversary A that attempts to guess the value of b in the following
game:

Game Ae(A,AE)

b
$← {0, 1}; L← ∅; k

$← AE.keygen()

b′ ← AEncrypt,Decrypt(); return (b ?= b′)

Oracle Encrypt(p)

if b then c
$← byte`c ; L[c]← p

else c← AE.encrypt k p
return c

Oracle Decrypt(c)
if b then p← L[c]
else p← AE.decrypt k c
return p

The adversary A is a program that can call the two oracle functions to encrypt and decrypt using a secret
key k. In the real case (b = 0) they just call the real AE implementation. In the ideal case (b = 1), Encrypt
replaces the ciphertext with a fresh random bytestring of the same length and logs the encryption in L,
while Decrypt performs decryption by a lookup in the log, returning either a plaintext recorded earlier or
⊥ when lookup fails. (In devising the Decrypt oracle we had a choice: we could instead have returned ⊥
when queried on a challenge ciphertext already recorded in L regardless of b. This strategy of rejecting
challenge ciphertexts is idiomatic in cryptographic definitions in which Decrypt always returns ⊥ when
b = 1. We decided to allow decryption of challenge ciphertexts when b = 0 and implement the ideal
behavior when b = 1 using table lookup. This allows us to more closely align game-based definitions with
idealized cryptographic libraries.) Ideal AE is perfectly secure, inasmuch as the ciphertext does not depend
on the plaintext. Thus, we define AE security by saying that the attacker cannot easily distinguish between
the ideal and real cases.

For this game, we define A’s advantage probabilistically as |2Pr[Ae(A,AE)]− 1|, e.g. an adversary
flipping a coin to guess b will succeed with probability 1

2 and has 0 advantage.
We adopt a more flexible notation for indistinguishability games: we keep the sampling of b and the

call to the adversary implicit, and instead indicate the oracles available to this adversary. Hence, we write
the game above (with the same oracles) equivalently as

Game Aeb(AE)

L← ∅ ; k
$← AE.keygen(); return {Encrypt,Decrypt}

7

This notation facilitates the re-use of oracles for building other games, much like F? modules. In general,
we write Gb to refer to an indistinguishability game G where the adversary A tries to guess the value of the
random bit b by calling the oracles returned by G. For all such games, we equivalently define the advantage
as
∣∣∣Pr[AG1

= 1]− Pr[AG0
= 1]

∣∣∣.
Embedding games in F? modules Although we wrote the game Aeb in pseudo-code, each game in this
paper reflects a verified F? module, also written e.g. AEb, that uses a boolean flag b to select between real
and ideal implementations of the underlying cryptographic module AE. For example, AEb may define the
key type and encrypt function as

abstract type key = {key: AE.key; log: encryption_log}
let encrypt (k:key) (p:plain) =
if b then
let c = random_bytes `c in
k.log ← k.log ++ (c,p);
c

else AE.encrypt k.key p

where the (private) key representation now includes both the real key and the ideal encryption log. The
encrypt function uses k.log to access the current log, and ++ to append a new entry in the log, much as the
Encrypt oracle.
Idealization Interfaces The idealized module AEb can be shown to implement the following typed inter-
face that reflects the security guarantee of the Aeb game:

abstract type key
val log: memory → key → Spec (seq (cipher × plain)) (∗ reads k.log ∗)
val keygen: unit → ST k:key
(ensures b ⇒ log k′ = ∅)

val encrypt: k:key → p:plain → ST (c:cipher)
(ensures b ⇒ log k′ = log k ++ (c,p))

val decrypt: k:key → c:cipher → ST (o:option plain)
(ensures b ⇒ o = lookup c (log k))

The interface declares keys as abstract, hiding both the real key value and the ideal log, and relies on
the log to specify the effects of encryption and decryption. To this end, it provides a log function that
reads the current content of the log—a sequence of ciphertexts and plaintexts. This function is marked
as Spec, indicating that it may be used only in specification and will be discarded by the compiler after
typechecking.

Each of the 3 ensures clauses above uses this ghost function to specify the state of the log before (log k)
and after the call (log k′). Hence, the interface states that, in the ideal case, the function keygen creates a key
with an empty log; encrypt k p returns a ciphertext c and extends the log for k with an entry mapping c to
p; and decrypt k c returns exactly the same result as a lookup for c in the current k.log. This post-condition
formally guarantees that decrypt succeeds if and only if it is passed a ciphertext that was generated by
encrypt; in other words it guarantees both functional correctness and authentication (a notion similar to
INT-CTXT).

AEb is also parameterized by a module Plainb that defines abstract plaintexts, with an interface that
allows access to their concrete byte representation only when b = 0 (for real encryption). By typing AEb,
we verify that our idealized functionality is independent (information-theoretically) from the actual values
of the plaintexts it processes.

8

From the viewpoint of the application, the plaintext abstraction guarantees that AE1 preserves the
confidentiality of encrypted data (as in classic information flow type systems), and its security guarantees
can be used to build higher-level authentication guarantees. For instance, the application may prove, as
an invariant, that only well-formed messages are encrypted using a given key, and thus that parsing and
processing of any decrypted message always succeeds.
Probabilistic Semantics In F?, we model randomness generation (e.g. random_bytes) using primitive
probabilistic sampling functions, returning e.g. true or false with probability 1

2 . Two Boolean terminating F?

expressions A0 and A1 are equivalent, written A0 ≈ A1, when they return true with the same probability.
They are ε-equivalent when ε = |Pr[A1 ⇓ true] − Pr[A0 ⇓ true]| where A ⇓ v denotes that program A
evaluates to value v in the language semantics of F?. These definitions extend to program evaluation
contexts, written Ab[_], in which case ε depends on the program plugged into the context, which intuitively
stands for the adversary. Equipped with these definitions, we can develop code-based game-playing proofs
following the well-established approach of Bellare and Rogaway [5] directly applied to F? programs rather
than pseudo-code.

For example, we can reformulate AE security as AE1[A] ≈ε AE0[A], where A now ranges over well-typed
Boolean programs parameterized by the two functions encrypt and decrypt defined by AEb. Our definition of
ε-equivalence between real and ideal implementations of AEb closely matches the definition of A’s advantage
in the Aeb game.
Concrete security definitions and reductions As illustrated for AE below, our security definitions
consist of a game and a notation for the adversary advantage, parameterized by some measures of their
use of the oracles (e.g. how many times the oracle is called). We intend to provide concrete bounds on
those advantages, as a function of their parameters. To this end, our reduction theorems will relate this
advantage for a given construction to the advantages of its building blocks.

Definition 1 (AE-security). Given AE, let εAe(A[qe, qd]) be the advantage of an adversary A that makes
qe queries to Encrypt and qd queries to Decrypt in the Aeb(AE) game.

We can either assume that this definition holds for our real AE module with an ε that is small for realistic
adversaries (possibly relying on functional correctness and some prior proof of security), or we can prove
that our AES-GCM module (say) achieves some bound on ε, by reduction to a simpler assumptions on the
AES cipher. In later sections, we will show how we can precisely compute the adversary A’s advantage in
the game above from a related adversary B’s advantage in winning the PRF game on the underlying cipher
(e.g. AES). The proof relies on standard cryptographic game transformations that are applied manually at
the level of F? code, combined with functional correctness proofs about the real and ideal code, verified
automatically by F?.
Games vs Idealized Modules There are several differences between the games we present and the actual
modules of our implementation. Standard-compliant modules include many details elided in informal games;
they also use lower-level representations to yield more efficient code, and require additional type annotations
to keep track of memory management.

These modules are part of a general-purpose verified cryptographic libraries, providing real functionality
(when idealizations flags are off), so they always support multiple instances of their functionality. Here, AEb

has a function to generate keys, passed as parameters to the encrypt function, whereas the game oracle uses
a single, implicit key. (This difference can usually be handled by a standard hybrid-argument reduction.)

Modules preferably rely on the F? type system to enforce the rules of the games. Hence, dynamic checks
in games (say, to test whether a nonce has already been used) are replaced with static pre-conditions on

9

typed adversaries. Similarly, types enforce many important but trivial conditions, such as the length of
oracle arguments, often kept implicit in the paper.

3 One-Time MACs

We begin with constructions for MACs. As detailed in §5, AEAD uses fresh key materials for each message
authentication, so we consider their security when MACing just once.

We treat the two main constructions, GHASH and Poly1305, using the same definitions, code, and
proofs, inasmuch as possible. We initially suppose that the whole key is freshly generated for each MAC
(as in ChaCha20-Poly1305), before presenting the general case where a part of the key is shared between
multiple MACs (as in AES-GCM).

3.1 One-time MAC functionality and security

We outline below our interface for message authentication code (MAC), omitting its functional specification
(see §9).

val `k0 : nat (∗ static key length, may be 0 ∗)
val `k: n:nat {`k0 ≤ `k} (∗ complete key length ∗)
val `t: nat (∗ tag length ∗)
val `m: nat (∗ maximal message length ∗)
type key0 = lbytes `k0

(∗ static key shared between MACs ∗)
type key = lbytes `k (∗ one−time key (including static key) ∗)
type tag = lbytes `t (∗ authentication tag ∗)
type message = b:bbytes `b {wellformed b}
val keygen0: unit → ST key0
val keygen: key0 → ST key
val verify: key → message → tag → Tot bool
val mac: k:key → m:message → Tot (t:tag{verify k m t})

This interface defines concrete byte formats for keys, tags, and messages. authenticated messages are strings
of at most `m bytes that comply with an implementation-specific well-formedness condition. (We need such
a condition for GHASH.) We let m range over well-formed messages.

Key-generation functions are marked as stateful (ST) to reflect their use of random sampling. Static
keys (of type key0) may be used to generate multiple one-time keys (of type key), defining keygen as e.g.
k

$← k0‖byte`k−`k0 . To begin with, we assume `k0 = 0 so that k0 is the empty string ε.
The two main functions produce and verify MACs. Their correctness is captured in the verify post-

condition of mac: verification succeeds at least on the tags correctly produced using mac with matching key
and message.
One-Time Security MAC security is usually defined using computational unforgeability, as in the fol-
lowing game:

Game UF-1CMA(A,MAC)

k
$← MAC.keygen(ε); log← ⊥

(m?, t?)← AMac

return MAC.verify(k,m?, t?)
∧ log 6= (m?, t?)

Oracle Mac(m)
if log 6= ⊥ return ⊥
t← MAC.mac(k,m)
log← (m, t)
return t

10

The Mac oracle permits the adversary a single chosen-message query (recorded in log) before he has to
produce a forgery. The advantage of A playing the UF-1CMA game is defined as εUF-1CMA(A[`m]) ,
Pr[UF-1CMA(A,MAC) = 1].

We seek a stronger property for AEAD—the whole ciphertext must be indistinguishable from random
bytes—and we need a decisional game for type-based composition, so we introduce a variant of unforgeability
that captures indistinguishability from a random tag (when r is set).

Definition 2 (IND-UF-1CMA). Let εMac1(A[`m, qv]) be the advantage of an adversary A that makes qv
Verify queries on messages of length at most `m in the following game:

Game Mac1b(MAC)

k
$← MAC.keygen(ε); log← ⊥

return {Mac,Verify}

Oracle Verify(m?, t?)
if b return log = (m?, t?)
return MAC.verify(k,m?, t?)

Oracle Mac(m)
if log 6= ⊥ return ⊥
t← MAC.mac(k,m)
if b ∧ r
t

$← byteMAC.`t

log← (m, t)
return t

In this game, the MAC oracle is called at most once, on some chosen message m; it returns a tag t and
logs (m, t). Conversely, Verify is called qv times before and after calling MAC. When b is set, the game
idealizes MAC in two ways: verification is replaced by a comparison with the log; and (when r is set) the
tag is replaced with random bytes.

We show (in the appendix) that our definition implies UF-1CMA when qv ≥ 1 and that random tags
are neither necessary nor sufficient for unforgeability. We are not aware of much prior work on Mac1 with
r set. A pairwise independent hash function would satisfy our IND-UF-1CMA definition but may require
longer keys [45].
Multi-Instance Security with a Shared Key In the AEAD construction, we instantiate a one-time
MAC for every encryption and decryption. AES-GCM uses a static MAC key computed from the AEAD
key, that is shared by all MAC instances. This state sharing is not captured by the games above. To this
end, we extend the Mac1b game into a multi-instance version MMac1b with a setup that invokes the keygen0

function to generate any key materials reused across instances.
In the multi-instance case it is convenient to support two kinds of instances: honest instances are

created with Keygen and idealized as in Mac1b; dishonest instances are created with Coerce and use the
real implementation regardless of b. (Formally Coerce does not make the model stronger, as an adversary
can run all algorithms himself. The finer model is however useful in hybrid arguments, and for composition
with a PRF in §4.)

Definition 3 (m-IND-UF-1CMA). Let εMMac1(A[`m, qv, qi]) be the advantage of an adversary A that creates
qi instances and makes at most qv Verify queries overall on messages of length at most `m in the game:

11

Game MMac1b(MAC)
log← ∅; k ← ∅; H ← ∅
k0

$← MAC.keygen0()
return {MAC,Verify,

Coerce,Keygen}

Oracle Mac(n,m)
if k[n] = ⊥ return ⊥
if log[n] 6= ⊥ return ⊥
t← MAC.mac(k[n],m)
if b ∧ n ∈ H
t

$← byteMAC.`t

log[n]← (m, t)
return t

Oracle Keygen(n)
if k[n] 6= ⊥ return ⊥
k[n]← MAC.keygen(k0)
H ← H ∪ n
Oracle Coerce(n, k)
if k[n] 6= ⊥ return ⊥
k[n]← k

Oracle Verify(n,m, t)
if k[n] = ⊥ return ⊥
v ← MAC.verify(k[n],m, t)
if b ∧ n ∈ H
v ← log[n] = (m, t)

return v

We confirm that Mac1 is a special case of MMac1 security and that, even with a static key, it suffices
to consider a single verification query. (The proofs are in the appendix.)

Lemma 1 (MMac1 reduces to Mac1). Given A against MMac1b, when `k0 = 0, we construct B (linearly
in qi) against Mac1b such that:

εMMac1(A[`m, qv, qi]) ≤ qi εMac1(B[`m, qv]).

Lemma 2. Given A against MMac1 we construct B such that:

εMMac1(A[`m, qv, qi]) ≤ qv εMMac1(B[`m, 1, qi]).

Verified Implementation m-IND-UF-1CMA security reflects the type-based security specification of our
idealized module MMac1b, which has an interface of the form

val log: memory → key → Spec (option (message × tag))
val mac: k:key → m:message → ST (t:tag)
(requires log k = None)
(ensures log k′ = Some(m,t))

val verify: k:key → m:message → t:tag → ST (v:bool)
(ensures b ⇒ v = (log k′ = Some(m,t)))

The types of mac and verify express the gist of our security property: the specification function log gives
access to the current content of the log associated with a one-time key; mac requires that the log be empty
(None in F?) thereby enforcing our one-time MAC discipline; verify ensures that, when b is set, verification
succeeds if and only if mac logged exactly the same message and tag. Their implementation is automatically
verified by typing MMac1b. However, recall that typing says nothing about the security loss incurred by
switching b—this is the subject of the next subsection.

Our implementation of MMac1b supports the two constructions described next, including code and
functional correctness proofs for their algorithms. It also provides a more efficient interface for computing
MACs incrementally. Instead of actually concatenating all authenticated materials in a message, the user
creates a stateful hash, then repeatedly appends 16-byte words to the hash, and finally calls mac or verify
on this hash, with a type that binds the message to the final hash contents in their security specifications.
Our code further relies on indexed abstract types to separate keys and hashes for different instances of the
functionality, and to support static key compromise.

12

3.2 Wegman-Carter-Shoup (WCS) Constructions

Next, we set up notations so that our presentation applies to multiple constructions, including GHASH and
Poly1305; we factor out the encodings to have a core security assumption on sequences of field elements;
we verify their injectivity; we finally prove a concrete bound in general, and in particular for GHASH and
Poly1305.

From bytes to polynomials and back In addition to fixed lengths for keys and tags, the construction
is parameterized by

• a field F;

• an encoding function · from messages to polynomials in F, represented as sequences of coefficients
m ∈ F∗.

• a truncation function from e ∈ F to tag(e) ∈ byte`t ;

The key consists of two parts: an element r ∈ F and a one-time pad s ∈ byte`t . We assume that r and s
are sampled uniformly at random, from some R ⊆ F and from byte`t , respectively. We write r‖s ← k for
the parsing of key materials into r and s, including the encoding of r into R.
Generic Construction Given a message m encoded into the sequence of d coefficients m0, . . . ,md−1 of
a polynomial m(x) =

∑
i=1..dmd−ix

i in F, the tag is computed as:

hashr(m)← tag(m(r)) in F (before truncation)
mac(r‖s,m)← hashr(m)� s in byte`t

where the blinding operation � is related to addition in F (see specific details below). We refer to hashr(m),
the part of the construction without blinding, as the hash.

We describe the two WCS instantiations employed in TLS.
GHASH [23] uses the Galois field GF (2128), defined as the extension GF (2)[x]/x128 + x7 + x2 + x + 1,
that is, the field of polynomials with Boolean coefficients modulo the irreducible polynomial x128 + x7 +
x2 + x + 1. Such polynomials are represented as 128-bit vectors. Conveniently, polynomial addition, the
blinding operation �, and its inverse � simply correspond to 128-bit XOR. Polynomial multiplication is
also efficiently supported on modern processors. The message encoding · simply splits the input message
into 16-byte words, seen as integers in 0..2128 − 1; and the tag truncation is the identity. For AES-GCM,
GHASH has a keygen0 function that samples a single random r ∈ GF (2128) shared across MAC instances.
Poly1305 [9] uses the prime field GF (p) for p = 2130 − 5, that is, the field of integer addition and mul-
tiplication modulo p, whose elements can all be represented as 130-bits integers. Its message encoding ·
similarly splits the input message into 16-byte words, seen as integers in 0..2128− 1, then adds 2` to each of
these integers, where ` is the word length in bits. (Hence, the encoding precisely keeps track of the length
of the last word; this feature is unused for AEAD, which applies its own padding to ensure ` = 128.) The
truncation function is tag(e) = e mod 2128. The blinding operation � and its inverse � are addition and
subtraction modulo 2128. For ChaCha20-Poly1305, both r and s are single-use (`k0 = 0) but our proof also
applies to the original Poly1305-AES construction [9] where r is shared.
Injectivity Properties We intend to authenticate messages, not just polynomial coefficients. To this
end, we instantiate our wellformed predicate on messages and we show (in F?) that

13

∀ (m0: bytes) (m1: bytes).
wellformed m0 ∧ wellformed m1 ∧ Poly.equals m0 m1 ⇒ m0 = m1

where Poly.equal specifies polynomial equality by comparing two sequences of coefficients, extending the
shorter sequence with zero coefficients if necessary. This enables the (conditional) composition of MACs
with suitable well-formedness predicates for AEAD in TLS. This is required for GHASH as it is otherwise
subject to 0-message truncations.

We verify that the property above suffices to prove that both encodings are secure, and also that it holds
in particular once we define wellformed as the range of formatted messages for AEAD (which are 16-byte
aligned and embed their own lengths; see §5). We also confirm by typing that, with Poly1305, there is no
need to restrict messages: its encoding is injective for all bytestrings [9, Theorem 3.2].
Security We give a theorem similar to those in prior work [9, 32, 46] but parameterized by the underlying
field F, encoding · , truncation tag, and blinding operation�. It covers all uses of AES-GCM and ChaCha20-
Poly1305 in TLS.

Consider the MMac1 definition covering both shared and fresh values for r. Let qv be the number of
oracle calls to Verify (for which log[n] 6= (m?, t?)) and d a bound on the size (expressed in number of field
elements) of the messages in calls to Mac and Verify.

Theorem 1. The Wegman-Carter-Shoup construction for messages in Fd−1 is m-IND-UF-1CMA secure
with concrete bound εMMac1(A[`m, qv, qi]) = d.τ.qv

|R| with d = `m/16, and τ = 1 for GHASH and τ = 8 for
Poly1305.

The proof (in the appendix) uses Lemma 2 then establishes a bound d·τ
|R| for an adversary that makes a

single Verify query. This bound follows from an d·τ
|R| -almost-�-universal property, which has been separately

proved for GHASH [38] and Poly1305 [9]; the appendix also includes its proof for all instantiations of hashr
for TLS.

Concrete bounds for GHASH The range size for r is 2128 and there is no tag truncation, hence by
Lemma 2 we get a straight ε = d·qv

2128
, so for TLS the main risk is a failure of our PRF assumption on AES.

We come back to this in §7.

Concrete bound for Poly1305 The effective range R of r is reduced, first by uniformly sampling in
0..2128−1, then by clamping 22 bits, to uniformly sampling one element out of | R |= 2106 potential values.
We lose another 3 bit of security from the truncation of F to byte`t and by applying Lemma 2 we arrive at
ε = d·qv

2103
.

4 Pseudo-Random Functions for AEAD

We now consider the use of symmetric ciphers in counter mode, both for keying one-time MACs and
for generating one-time pads for encryption. We model ciphers as PRFs. For TLS, we will use AES or
ChaCha20, and discuss PRF/PRP issues in §7. A pseudo-random function family PRF implements the
following interface:

type key
val keygen: unit → ST key
val `d : nat (∗ fixed domain length ∗)

14

val `b : nat (∗ fixed block length ∗)
type domain = lbytes `d
type block = lbytes `b
val eval: key → domain → Tot block (∗ functional specification ∗)

This interface specifies an abstract type for keys and a key-generation algorithm. (Type abstraction ensures
that these keys are used only for PRF computations.) It also specifies concrete, fixed-length bytestrings for
the domain and range of the PRF, and a function to compute the PRF. We refer to the PRF outputs as
blocks. As usual, we define security as indistinguishability from a random function with lazy sampling.

Definition 4 (PRF security). Let εPrf(A[qb]) be the advantage of an adversary A that makes qb Eval queries
in the game:

Game Prfb(PRF)
T ← ∅
k

$← PRF.keygen()
return {Eval}

Oracle Eval(m)
if T [m] = ⊥

if b then T [m]
$← byte`b

else T [m]← PRF.eval(k,m)
return T [m]

The AEAD constructions we consider use PRFs both to generate keys for the one-time MAC used to
authenticate the ciphertext and to generate a one-time pad for encryption and decryption. Accordingly, we
partition the domain and use a specialized security definition, with a separate eval function for each usage
of the PRF. (This will enable us to give more precise types to each of these functions.)

We assume the PRF domain consists of concatenations of a fixed-sized counter j and a nonce n, written
j‖n. This notation hides minor differences between AEAD algorithm specifications, e.g. AES-GCM uses n‖j
instead j‖n. Our implementation handles these details, and verifies that j‖n is injective for all admissible
values of j and n.

For key generation, AES-GCM uses the PRF to derive both a static MAC key k0 generated from the
PRF (with nonce and counter 0) and a 1-time MAC key for each nonce (with counter 1), whereas Poly1305
uses a pure 1-time MAC key for each nonce (with counter 0). To handle both cases uniformly, we introduce a
parameter j0 ∈ {0, 1} to shift the counter before concatenation with the nonce. In the following, we assume
a compatible MAC, meaning that either j0 = 0 ∧ `k0 = 0 ∧ `k ≤ `b or j0 = 1 ∧ `k0 ≤ `b ∧ `k − `k0 ≤ `b.

For pad generation, counter mode encrypts plaintext blocks as p ⊕ eval(j‖n) and decrypts by applying
the same pad to the ciphertext. In the PrfCtr game below, we separate encryption and decryption, and we
fuse the block generation and the XOR, so that we can give separate types to plaintexts and ciphertexts.
(We truncate the block in case it is smaller than the input, as required for the last block in counter-mode.)

Definition 5 (PrfCtr security). Given PRF and MAC, let εPrfCtr(A[qb, qg]) be the advantage of an adversary
A that makes qb queries to either EvalEnx or EvalDex and qg queries to EvalKey in the following game:

15

Game PrfCtrb(PRF,MAC)
T ← ∅; R← ∅
k

$← PRF.keygen()

k0
$← MAC.keygen0()

if j0 ∧ ¬b
o← PRF.eval(k, 0`b)
k0 ← truncate(o,MAC.`k0)

return {EvalKey,EvalEnx,
EvalDex}

Oracle EvalKey(j‖n)
if j 6= j0 return ⊥
if T [j‖n] = ⊥

if b

km
$← MAC.keygen(k0)

else
o← PRF.eval(k, j‖n)
km ← truncate(k0‖o, `k)

T [j‖n]← km
return T [j‖n]

Oracle EvalEnx(j‖n, p)
if j ≤ j0 return ⊥
o

$← Eval(j‖n)
c← p⊕ truncate(o, |p|)
return c

Oracle EvalDex(j‖n, c)
if j ≤ j0 return ⊥
o

$← Eval(j‖n)
p← c⊕ truncate(o, |c|)
return p

Lemma 3 (PrfCtrb reduces to Prfb). Given PRF, MAC, and A against PrfCtrb(PRF,MAC), we construct B
against Prfb(PRF) such that:

εPrfCtr(A[qb, qg]) = εPrf(B[qb + qg + j0]).

The proof is in the appendix. Intuitively, we have a perfect reduction because, in all cases, the specialized
game still samples a single fresh block for each j‖n for a single purpose, and returns a value computed from
that block.

In the next section, once b holds and the MAC has been idealized, we will use two oracles that further
idealize encryption and decryption:

Oracle EvalEnx′(j‖n, p)
if j ≤ j0 return ⊥
if T [j‖n] 6= ⊥ return ⊥
if b′ c

$← byte|p|

else c
$← EvalEnx(j‖n, p)

T [j‖n]← (p, c)
return c

Oracle EvalDex′(j‖n, c)
if j ≤ j0 return ⊥
if T [j‖n] = (p, c) for some p
return p

else return ⊥

When b′ holds, encryption samples c instead of o = p⊕ c, and records the pair (p, c) instead of just p⊕ c;
and decryption simply performs a table lookup. This step is valid provided the block at j‖n is used for
encrypting a single p and decrypting the resulting c. The oracles enforce this restriction dynamically (on
their second lines) whereas our code enforces it statically, using type-based preconditions on EvalEnx or
EvalDex implied by the AEAD invariant of §5.
Verified Implementation Lemma 3 and the subsequent step are not currently verified by typing. (Still,
note that the sampling of c instead of o is justified by F?’s probabilistic semantic and could be verified
using the relational typing rule for sample in RF? [4])

We use an idealized PRF module with two idealization flags (for b and for b′) that directly corresponds to
the specialized game PrfCtrb,b

′
, parameterized by a Cipher module that implements real AES128, AES256,

and Chacha20 (depending on an algorithmic parameter alg) and by a MAC module. The separation of the
PRF domain is enforced by typing: depending on alg , j0, j, b, and b′, its range includes keys, blocks, and
pairs (p, c).

16

5 From MAC and PRF to AEAD

We implement the two main AEAD constructions used by TLS 1.3 and modern ciphersuites of TLS 1.2.
We show that their composition of a PRF and a one-time MAC yields a standard notion of AEAD security.
Our proof is generic and carefully designed to be modular and TLS-agnostic: we share our AEAD code
between TLS 1.2 and 1.3, and plan to generalize it for other protocols such as QUIC.
AEAD functionality Our authenticated encryption with associated data (AEAD) has a real interface of
the form

val `n: nat (∗ fixed nonce length ∗)
val `a: n:nat{n < 232} (∗ maximal AD length ∗)
val `p: n:nat{n < 232} (∗ maximal plaintext length ∗)
val cipherlen: n:nat{n ≤ `p} → Tot nat
type nonce = lbytes `n
type ad = bbytes `a
type plain = bbytes `p
type cipher = bytes

val decrypt: key → nonce → ad → c:cipher →
ST (option (p:plain{length c = cipherlen (length p)}))

val encrypt: k:key → n:nonce → a:ad → p:plain →
ST (c:cipher{length c = cipherlen (length p))

with two main functions to encrypt and decrypt messages with associated data of variable lengths, and
types that specify the cipher length as a function of the plain length. (We omit declarations for keys, similar
to those for PRFs §4.)

Definition 6 (Aead security). Let εAead(A[qe, qd, `p, `a]) be the advantage of an adversary that makes at
most qe Encrypt and qd Decrypt queries on messages and associated data of lengths at most `p and `a in the
game:

Game Aeadb(AEAD)
C ← ∅
k

$← AEAD.KeyGen()
return {Encrypt,Decrypt}

Oracle Encrypt(n, a, p)
if C[n] 6= ⊥ return ⊥
if b c

$← bytecipherlen(|p|)

else c← AEAD.encrypt(k, n, a, p)
C[n]← (a, p, c)
return c

Oracle Decrypt(n, a, c)
if b

if C[n] = (a, p, c) for some p
return p

return ⊥
else
p← AEAD.decrypt(k, n, a, c)
return p

Our definition generalizes AE in §2; it has a richer domain with plaintext and associated data of variable
lengths; a function cipherlen from plaintext lengths to ciphertext lengths; and nonces n. It similarly maintains
a log of encryptions, indexed by nonces. Crucially, Encrypt uses the log to ensure that each nonce is used
at most once for encryption.
Generic AEAD Construction Given a PRF and a compatible MAC, AEAD splits plaintexts into blocks
which are then blinded by pseudo-random one-time pads generated by calling PRF on increasing counter
values, as shown in §4. (Blocks for MAC keys and the last mask may require truncation.)

17

To authenticate the ciphertext and associated data, the construction formats them into a single 16-byte-
aligned buffer (ready to be hashed as polynomial coefficients as described in §3) using an encoding function
declared as val encode: bbytes `p × bbytes `a → Tot bbytes (`p + `a + 46) and implemented (in pseudo-code) as

Function encode(c, a)
return pad16(a) ‖ pad16(c)
‖ length8(a) ‖ length8(c)

Function pad16(b)
r, b1, . . . , br ← split16(b)
return b ‖ zeros(16− |br|)

where the auxiliary function split`(b) splits the bytestring b into a sequence of r non-empty bytestrings, all of
size `, except for the last one which may be shorter. (that is, if r, b1, . . . br ← splitb(`), then b = b1 ‖ · · · ‖ br.);
where zeros(`) is the bytestring of ` zero bytes; and where length8(n) is the 8-byte representation of the
length of n. Thus, our encoding adds minimal zero-padding to a and c, so that they are both 16-bytes
aligned, and appends a final 16-byte encoding of their lengths.

Recall that the domain of MAC messages is restricted by the wellformed predicate. We now define
wellformed b = ∃ (c:cipher) (a:ad). b = encode c a and typecheck the property listed in §3 that ensures injectiv-
ity of the polynomial encoding.

The rest of the AEAD construction is defined below, using an operator otp⊕ p that abbreviates the
expression truncate(otp, |p|)⊕ p, and a function untag16 that separates the ciphertext from the tag.

The main result of this section is that it is Aead-secure when PRF is Prf-secure and MAC is MMac1-
secure:

Function keygen()

k
$← PRF.keygen(); k0 ← ε

if j0
o← PRF.eval(k, 0`b)
k0 ← truncate(o,MAC.`k0)

return k0‖k

Function encrypt(K,n, a, p)
(k0, k)← split`k0

(K); c← ε

k1 ← PRF.eval(k, j0‖n)
km ← truncate(k0‖k1,MAC.`k)
r, p1, . . . , pr ← split`b(p);
for j = 1..r
otp← PRF.eval(k, j0 + j‖n)
c← c ‖(otp⊕ pj)

t← MAC.mac(km, encode(c, a))
return c‖t

Function decrypt(K,n, a, c)
(k0, k)← split`k0

(K); p← ε

k1 ← PRF.eval(k, j0‖n)
km ← truncate(k0‖k1,MAC.`k)
(c, t)← untag16(c)
m← encode(c, a)
if ¬MAC.verify(km,m, t)
return ⊥

r, c1, . . . , cr ← split`b(c);
for j = 1..r
otp← PRF.eval(k, j0 + j‖n)
p← p ‖(otp⊕ cj)

return p

Theorem 2 (AEAD construction). Given A against Aead, we construct B against Prf and C against
MMac1, with:

εAead(AEAD)(A[qe, qd, `p, `a]) ≤ εPrf(PRF)(B[qb])
+ εMMac1(MAC)(C[`p + `a + 46, qd, qe + qd])

where qb (the number of distinct queries to the PRF) satisfies:

qb ≤ j0 + qe

(
1 +

⌈
`p
`b

⌉)
+ qd

18

Proof sketch. The proof relies on the PrfCtrb,b
′
and MMac1b idealizations. It involves a sequence of trans-

formations from Aead0 to Aead1 that inline successively more idealizations. Therefore, we introduce a
parametric game AeadCtr(X) for any game X that returns EvalKey, EvalEnx, EvalDex, Mac, and Verify
oracles:

Game AeadCtr(X)
(EvalKey,EvalEnx,EvalDex,Mac,Verify)← X()
return {Encrypt,Decrypt}

Oracle Encrypt(n, a, p)
if C[n] 6= ⊥ return ⊥
EvalKey(n); c← ε
r, p1, . . . , pr ← split`b(p)
for j = 1..r
c← c ‖EvalEnx(j0 + j‖n, pj)

c← c ‖Mac(n, encode(c, a))
C[n]← (a, p, c)
return c

Oracle Decrypt(n, a, c)
c, t← untag16(c)
EvalKey(n)
if ¬Verify(n, encode(c, a), t)
return ⊥

r, c1, . . . , cr ← split`b(c); p←ε
for j = 1 . . . r
p← p ‖EvalDex(j0 + j‖n, cj)

return p

When X is obtained from PrfCtr0 and MMac10 we have a game that is equivalent to Aead0. We first switch
to PrfCtr1 to get random MAC keys and then idealize MMac11. When X is obtained from PrfCtr1 and
MMac11 ciphertexts are authenticated and we can switch to PrfCtr1,0 and then to PrfCtr1,1. At this stage
the PRF table contains randomly sampled ciphertext blocks and decryption corresponds to table lookup in
this table. This is ensured on the code by our AEAD invariant. The full proof is in the appendix.

Verified Implementation We outline below the idealized interface of our main AEADb module built on
top of (the idealized interfaces of) PrfCtrb,b

′
and MMac1b, both taken as cryptographic assumption, and

documented by the games with the same name on paper. We focus on types for encryption and decryption:

abstract type key (∗ stateful key, now containing the log C ∗)
val log: memory → key → Spec (seq (nonce × ad × cipher × plain)
val keygen : unit → ST (k:key)
(ensures b ⇒ log k = ∅)

val encrypt: k:key → n:nonce → a:ad → p:plain → ST (c:cipher)
(requires b ⇒ lookup_nonce n (log k) = None)
(ensures (b ⇒ log k′ = log k ++ (n,a,c,p)))

val decrypt: k:key → n:nonce → a:ad → c:cipher → ST (o:option plain)
(ensures b ⇒ o = lookup (n,a,c) (log k))

As in §2, we have a multi-instance idealization, with a log for each instance stored within an abstract,
stateful key; and we provide a ghost function log to access its current contents in logical specifications.
Hence, key generation allocates an empty log for the instance; encryption requires that the nonce be fresh
and records its results; and decryption behaves exactly as a table lookup, returning a plaintext if, and only
if, it was previously stored in the log by calling encryption with the same nonce and additional data.

This step of the construction is entirely verifiable by typing. To this end, we supplement its implemen-
tation with a precise invariant that relates the AEAD log to the underlying PRF table and MAC logs. For
each entry in the log, we specify the corresponding entries in the PRF table (one for the one-time MAC key,
and one for each block required for encryption) and, for each one-time MAC key entry, the contents of the
MAC log (an encoded message and the tag at the end of the ciphertext in the AEAD log entry). By typing
the AEAD code that implements the construction, we verify that the invariant is preserved as it completes
its series of calls to the PRF and MAC idealized interfaces. Hence, although our code for decryption does

19

not actually decrypt by a log lookup, we prove that (when b holds) its results always matches the result of
a lookup on the current log. As usual, by setting all idealization flags to false, the verified code yields our
concrete TLS implementation.
Security bounds Theorem 2 can be specialized to provide precise security bounds for the various AEAD
ciphersuites:

Construction εAead(A[qe, qd, `p, `a]) ≤
AES-GCM εPrf

(
B
[
qe

(
1 +

`p
16

)
+ qd + 1

])
+ qd

2128
·
(
`p+`a+46

16

)
ChaCha20-
Poly1305

εPrf

(
B
[
qe

(
1 +

`p
64

)
+ qd

])
+ qd

2103
·
(
`p+`a+46

16

)
In this paper, we only consider MAC schemes that provide information theoretic security although we do
not rely on this fact in the proof of AEAD.

6 From AEAD to Stream Encryption (StAE)

TLS requires stream encryption: message fragments must be received and processed in the order they
were sent, thereby defeating attempts to delete or re-order network traffic. To this end, encryption and
decryption use a local sequence number to generate distinct, ordered nonces for AEAD.

In practice, it is difficult to prevent multiple honest servers from decrypting and processing the same 0-
RTT encrypted stream. Since decryption is now stateful, we must generalize our model to support multiple
parallel decryptors for each encryptor. In our security definitions, we thus add a genD oracle to generate
new decryptors (with local sequence numbers set to zero) from a given encryptor.

Otherwise, the stateful construction is quite simple: TLS 1.3 combines the sequence number with a
static, random ‘initialization vector’ (IV) in the key materials to generate pairwise-distinct nonces for
encrypting fragments using AEAD. In contrast, TLS 1.2 nonces concatenate the static IV with a per-
fragment explicit IV that is sent alongside the ciphertext on the network (except for ciphersuites based on
ChaCha20-Poly1305 which follow the TLS 1.3 nonce format). Some TLS 1.2 implementations incorrectly
use uniformly random explicit IVs [16]. This is much inferior to using the sequence number because of the
high collision risk on 64 bits. Therefore, in our implementation, we use the following nonce construction:

n =

{
bigEndian8(seqn) ‖ iv4 for AES-GCM in TLS 1.2
bigEndian12(seqn)⊕ iv12 otherwise

where the indices indicate lengths in bytes. We discuss at the end of the section the impact of random
explicit IVs in TLS 1.2 on the concrete security bound. The use of longer static IVs in TLS 1.3 is a
practical improvement, as (informally) it acts as an auxiliary secret input to the PRF and may improve
multi-user security [7]. This is particularly clear for ChaCha20, where the key, nonce, and counter are just
copied side by side to the initial cipher state.

We easily verify (by typing) that both constructions are injective for 0 ≤ seqn < 264, which is required
(also by typing) to meet the ‘fresh nonce’ pre-condition for calling AEAD encryption. Formally, the state

20

invariant for StAE encryption is that 0 ≤ seqn < 264 and the underlying AEAD log has an entry for every
nonce n computed from a sequence number smaller than seqn.
StAE functionality A stream authenticated encryption functionality StAE implements the following
interface:

type seqn_t = UInt64.t
val qe: seqn_t (∗ maximal number of encryptions ∗)
val cipherlen: n:nat{ n ≤ `p } → Tot nat (∗ e.g. `p + MAC.`t ∗)

type role = E | D
abstract type state (r:role)
val seqn: mem → state r → Spec seqn_t
val gen: unit → ST (s:state E) (ensures seqn s′ = 0)
val genD: state E → ST (s:state D) (ensures seqn s′ = 0)
val encrypt: s:state E → ad → p:plain →
ST (c:cipher{length c = cipherlen (length p))
(requires seqn s < qe) (ensures seqn s′ = seqn s + 1)

val decrypt: s:state D → ad → c:cipher →
ST (o:option (p:plain{length c = cipherlen (length p)}))
(requires seqn s < qe)
(ensures seqn s′ = if o = None then seqn s else seqn s + 1)

We omit type declarations for plain, cipher and ad as they are similar to AEAD. For TLS, the length of
additional data `a can be 0 (TLS 1.3) or 13 (TLS 1.2) and the length of IVs `iv is 12. Compared to previous
functionalities, the main change is that keys are replaced by states that include a 64-bit sequence number.
Accordingly, in this section we assume that at most 264 fragments are encrypted. The stateful function gen
initializes the encryptor state used by the encryption algorithm, while genD initializes a decryptor state
used by the decryption algorithm. The stateful encrypt and decrypt functions require that the sequence
number in the key state does not overflow (seqn s < qe) and ensure that it is incremented (only on success
in the case of decryption). In pseudo-code, authenticated stream encryption is constructed as follows:

Function gen()

k
$← AEAD.keygen()

iv
$← byte`iv

return {k ← k;
iv ← iv; seqn← 0}

Function genD(s)
return {k ← s.k;
iv ← s.iv; seqn← 0}

Function encrypt(s, a, p)
n← nonce(s.iv, s.seqn)

c
$← AEAD.encrypt(s.k, n, a, p)

s.seqn← s.seqn+ 1
return c

Function decrypt(s, a, c)
n← nonce(s.iv, s.seqn)
p← AEAD.decrypt(s.k, n, a, c)
if (p = ⊥) return ⊥
s.seqn← s.seqn+ 1
return p

Definition 7 (Stae). Let εStae(A[qe, qd, `p, `a]) be the advantage of an adversary A that makes qe encryption

21

queries and qd decryption queries in the game below.

Game Staeb(StAE)

s
$← StAE.gen()

D ← ∅ E ← ∅
return {GenD,Encrypt,

Decrypt}

Oracle GenD(d)
if (D[d] 6= ⊥) return ⊥
D[d]← StAE.genD(s)

Oracle Encrypt(a, p)
if b

c← bytecipherlen(|p|)

else
c← StAE.encrypt(s, a, p)

E[s.seqn− 1, a, c]← p
return c

Oracle Decrypt(d, a, c)
if (D[d] = ⊥) return ⊥
if b
p← E[D[d].seqn, a, c]
if (p 6= ⊥)
D[d].seqn← D[d].seqn+ 1

else
p← StAE.decrypt(D[d], a, c)

return p

The game involves a single encryptor, a table of decryptors D, and a log of encryptions E. For brevity, it
relies on the stateful encryptor and decryptors specified above, e.g. encrypts increments s.seqn and Encrypt
records the encryption with sequence number s.seqn−1. (Equivalently, it could keep its own shadow copies
of the sequence numbers.) In contrast with AEAD, decryption only succeeds for the current sequence
number of the decryptor.

Our definition corresponds most closely to level-4 (stateful) LHAE of [17]. In both definitions the re-
quirement is that decrypt only successfully decrypted a prefix of what was sent. We discuss minor differences:
in their game the adversary needs to distinguishm0 fromm1, while in our game he has to distinguish cipher-
texts from random. Also, instead of rejecting all decryptions when b = 0 and forbidding in-sync challenge
ciphertexts when b = 1 we return in-sync challenge plaintexts in both cases. These changes are superficial;
the rational behind them is to keep our game close to our idealizing modules in the implementation. An-
other difference is that we do not require real decryption to continue rejecting ciphertexts upon decryption
failure. We also leave length-hiding and stream termination to §7. So our definition compares to their
definitions with the maximal plaintext length set to |p|.

Theorem 3 (Stae perfectly reduces to Aead). Given A against Stae, we construct B against Aead with

εStae(A[qe, qd, `p, `a]) = εAead(B[qe, qd, `p, `a]).

Proof. We build B by composing A with a variant of the construction given above that calls Aead oracles
instead of AEAD functions.

In TLS 1.2 with AES-GCM, there is a probability p(qe) ≈ q2e
265

of collision when the IVs are randomly
sampled. This probably already exceeds 2−32 after less than 217 fragments. This is more than sufficient to
mount practical attacks against HTTPS websites, as demonstrated in [16]. Therefore, random explicit IVs
must not be used in TLS 1.2.

7 TLS Content Protection: Length-Hiding Stream Encryption

We are now ready to use stream encryption for protecting TLS 1.3 traffic, which consists of a sequence of
protocol-message fragments, each tagged with their content type, while hiding their content, their type,

22

Figure 3: Constructing a TLS 1.3 record fragment

and their actual size before padding. The steps taken by the record layer to construct encrypted fragments
are depicted in Figure 3, with apparent size ` after padding. The last line adds the (unprotected) record
header; for backward compatibility, it pretends to be a TLS 1.0 AppData record irrespective of its actual
encrypted content type. On the other hand, TLS does not attempt to hide the record boundaries (as e.g.
SSH) so we do not expect indistinguishability from random for the resulting record.
Formatting: Content Type and Length Hiding Encryption and decryption rely on formatting and
padding functions over a type fragment indexed by a length ` indicating the public maximal length of its
content, which are specified as follows:

type len = n:nat {n ≤ 214} (∗ valid record length in TLS ∗)
type fragment (`:len) = {ct:byte; data:bbytes `}
val parse: `:len → lbytes (`+1) → Tot (option (fragment `))
val format: `:len → f:fragment ` → Tot (p:lbytes (`+1))
(ensures parse ` p = Some f)

These functions must be carefully implemented to prevent any side channel. We also construct and parse
records into headers and payloads using functions

val parse_record: r:record → Tot (option (n:nat × c:lbytes n))
val format_record: n:nat → c:lbytes n → Tot (r:record)
(ensures parse_record r = Some (n,c))

These function specifications suffice to establish our theorems below. We now give the concrete format
function for TLS 1.3:

Function format(` : len, f : fragment `)
f.data ‖[f.ct] ‖ pad0(`− |f.data|)

where pad0 n is the string of n 0x00 bytes. We verify the post-condition of format by typing. We omit the
corresponding parse function and the code for processing headers.

The implementation of parse and format, and the converse function for parsing a bytestring into a fragment
value, require precautions to avoid leaking the actual contents length using side-channels. The code for
processing headers does not depend on the fragment, only on its length after padding.
Stream Closure As explained in §6, stream integrity ensures that decrypted traffic is a prefix of encrypted
traffic. Complementarily, the TLS record layer relies on well-defined final fragments, specified as a predicate
val final: fragment ` → Tot bool, to ensure that no further encryptions are performed on a stream after sending
such a fragment.

23

For LHAE, we extend the stateful key of StAE to record the termination status of the stream, which
can be queried with the predicate val closed: mem → state r → Spec bool. Furthermore, we extend the post-
condition of encryption to ensure that the state s′ after encrypting fragment f satisfies closed s′ = final f.
Therefore, upon receiving a final fragment, the decryptor is guaranteed to have received the whole data
stream. This control-flow mechanism only depends on stream integrity; it does not involve additional
cryptography, but provides a useful additional guarantee to the application, and may help achieve forward
secrecy by erasing the stream key immediately after closure.
LHSE Construction and Game The LHSE construction is:

Function encrypt(s, `, f)
if closed(s) return ⊥
p← format(`, f)
c← StAE.encrypt(s, [], p)
if (final f) s← closed
return format_record(`, c)

Function decrypt(s, r)
if closed(s) return ⊥
`, c← parse_record(v)
p← StAE.decrypt(s, [], c)
f ← parse(`, p)
if (f 6= ⊥ ∧ final f) s← closed
return f

with the same state as StAE—we omit the unmodified functions for generating encryptors and decryptors.
When a final fragment is sent or received, we erase the StAE state.

The TLS 1.3 construction uses empty associated data, relying on implicit authentication of the under-
lying key and sequence number. (Our code also supports the older TLS 1.2 construction, which uses 13
bytes of associated data in total, obtained by appending the protocol version and the content type to the
sequence number of stream encryption.)

Definition 8 (Lhse). Given LHSE, let εLhse(A[qe, qd]) be the advantage of an adversary A that makes qe
encryption queries and qd decryption queries in the game below.

Game Lhseb(LHSE)

s
$← Lhse.gen()

D ← ∅; F ← ∅
return {GenD,Encrypt,Decrypt}

Oracle GenD(d)
if (D[d] = ⊥)
D[d]← LHSE.genD(s)

Oracle Encrypt(`, f)
if b
r ← LHSE.encrypt(s, `, ffinal(f))

else
r ← LHSE.encrypt(s, `, f)

F [s.seqn− 1, r]← f
return v

Oracle Decrypt(d, v)
if (D[d] = ⊥) return ⊥
sd ← D[d]
if b

if closed(sd) return ⊥
f ← F [sd.seqn, r]
if (f 6= ⊥) sd.seqn++
if (f 6= ⊥ ∧ final f) sd ← closed

else
f ← LHSE.decrypt(sd, v)

return f

where f0 (respectively, f1) is a fragment (respectively, a final fragment), with fixed content type and data 0`.

The game logs the encryption stream in F , indexed by fragment sequence numbers and ciphertexts. It
has an oracle for creating decryptors; it stores their state in a table D, indexed by some abstract d chosen
by the adversary. It does not model stream termination, enforced purely by typing the stream content.

24

Theorem 4 (Lhse perfectly reduces to Stae).
Given A against Stae, we construct B against Aead with

εLhse(A[qe, qd]) = εStae(B[qe, qd, 214 + 1, `a])

where `a is 0 for TLS 1.3 and 13 for TLS 1.2.

Proof. We build B by composing A with a variant of the construction given above that calls Stae oracles
instead of its functions. The 1.3 record does not use authenticated data, `a = 0, (while in TLS 1.2 it was
`a = 13). The maximum fragment size is `p = 214 + 1. We encrypt one additional byte for the content
type.

Multi-Stream LHSE In the next section (as in our interface above), we use a multi-instance Lhse game,
defined below.

Game Multi(Lhseb)
E ← ∅; return {Gen,GenD,Encrypt,Decrypt}

Oracle Gen(i)

if (E[i] = ⊥) E[i]
$← Lhseb()

Oracle GenD(i, d)

if (E[i] = ⊥) E[i]
$← Lhseb()

E[i].GenD(d)

Oracle Encrypt(i, `, f)
if (E[i] = ⊥) return ⊥
return E[i].Encrypt(`, f)

Oracle Decrypt(i, d, v)
if (E[i] = ⊥) return ⊥
return E[i].Decrypt(d, v)

For every fresh index i passed to Gen, we spawn an instance of Lhse and we record its state and oracle in
table E. In all other cases, the oracles above now look up the shared instance at i and forward the call to
the instance oracle.
Security bounds for TLS Table 1 gives the concrete bounds by ciphersuites, setting `p to 214 + 1 and
`a to 0 (or 13 for TLS 1.2).

Chacha20 uses a Davies-Meyer construction and is considered a good PRF. For AES-GCM ciphersuites,
blocks are relatively small (16 bytes) so we incur a loss of q2b

2129
by the PRP/PRF switching lemma [6],

intuitively accounting for the probability of observing collisions on ciphertext blocks and inferring the
corresponding plaintext blocks are different. As observed e.g. by Luykx and Paterson [37], this factor limits
the amount of data that can be sent securely using AES-GCM.

Based on their suggestion to send at most 224.5 fragments with the same key (itself based on a proof
by [10] for the UF-1CMA security of GHASH that avoids the full PRF-PRP switching loss), our implemen-
tation may automatically trigger TLS re-keying after sending 224.5 fragments. This strategy results in the
bound in the last row, which no longer depends quadratically on qe and thus achieves a poor man’s form
of beyond birthday bound security.
The Luykx and Paterson bound shows that when qe ≤ 250 and qd ≤ 260 then the success probability
of any attacker breaking the integrity of AES-GCM is bounded by 2−56. Conditioned on all decryption
queries having failed, they can then assume qd = 0 when considering the bound for confidentiality.

To tolerate an attacker success probability of at most ε, they compute the maximum number of encrypted
fragments qe such that qe ≤

√
2129ε−1

(1+(214+1)/16)
. For instance as long as at most 224.5 records are encrypted they

bound the success probability by ε = 2−60.

25

Ciphersuite εLhse(A[qe, qd]) ≤
General
bound

εPrf(B[qe(1 + d(214 + 1)/`be) + qd + j0])
+ εMMac1(C[214 + 1 + 46, qd, qe + qd])

ChaCha20-
Poly1305

εPrf(B
[
qe

(
1 +

⌈
(214+1)

64

⌉)
+ qd

]
) + qd

293

AES128-
GCM
AES256-
GCM

εPrp(B[qb]) + q2b
2129 + qd

2118

where qb = qe(1+d(214+1)/16e)+qd+1

AES128-
GCM
AES128-
GCM

qe
224.5

(
εPrp(B

[
234.5

]
) + 1

260 + 1
256

)
with re-keying every 224.5 records
(counting qe for all streams, and
qd ≤ 260 per stream)

Table 1: Summary of security bounds for the AEAD ciphersuites in TLS.

Let us now consider the bound for simultaneously achieving confidentiality and integrity. By solving

for qe we have: qe ≤
√

2129ε−211qd−qd−1
1+d214+1e/16 . For qd = 234 we have qe ≤ 222.72, while for qd = 235 we no longer

get a meaningful security bound. For qd = 232 one can send a more satisfying qe ≤ 224.21 records. If as in
1RTT only a single failed decryption query is accepted, then qd = 1 and we get qe = 224.49, essentially the
same bound as Luykx and Paterson [37].
Exhaustive key search To better understand the terms εPrp and εPrf above, let us recall an exhaustive,
ideal-cipher attack. Assume the adversary can search for qK keys (each time encrypting a known plaintext
block and comparing it with an oracle encryption of that block). The attack succeeds with probability
qK
2`K

. With AES128 exhaustive key search is the best attack when this term dominates the quadratic term
(qK ≥ 2q2b), and the third term (qK ≥ 211qd).

8 The TLS 1.3 Record Protocol

Figure 4 presents the TLS 1.3 protocol from draft 18, focusing only on how it drives the record layer. In
particular, this presentation ignores most of the details of the handshake.

The client sends the ClientHello message in cleartext, and may then immediately install a fresh 0-RTT
key kc0 in the record layer and use it to encrypt a stream of early data.

The server receives this message and, if it accepts 0-RTT, also installs the 0-RTT key kc0 and decrypts
the client’s data. Otherwise, it discards this first stream. In parallel, the server sends a ServerHello
message that allows both parties to derive encryption keys kch and ksh for the handshake messages, and kc1
and ks1 for application data. The server installs ksh in the record and uses it to encrypt a first stream of
handshake messages, ending with a finished message that triggers the installation of key ks1. If the server
supports 0.5-RTT, it may immediately start using ks1 for sending application data.

Once 0-RTT stream is complete (signaled by an end-of-early-data alert) and after processing the
ServerHello, the client installs the handshake keys kch and ksh for encryption and decryption. It com-
pletes the handshake by sending its own encrypted stream, ending with a finished message, and installs the
of application traffic keys kc1 and ks1.

Upon completing the handshake, the server also installs kc1 for decryption. After this point, the con-

26

nection is fully established and both parties use the installed application traffic keys for all content types:
AppData, Alert, and even Handshake messages (such as KeyUpdate).

Later, the client (or the server) can terminate their current output stream by sending either a KeyUpdate
handshake message or a close-notify alert message. In the first case, it installs and starts using the next
application traffic key kc2 (then kc3, etc). The server (or the client) responds accordingly, with a KeyUpdate
or a close-notify. In the first case, it installs and starts using the next traffic keys kc2 and ks2. In the second
case, the connection is closed.

In all cases, each party uses a single stream at a time in each direction, for sending and receiving all
content types, and each stream ends with a distinguished message that clearly indicates its final fragment.
0-RTT data ends with an end-of-early-data alert; encrypted handshake messages in both directions end
with the finished message; 0.5 and 1-RTT data streams end with a key update or a close-notify alert. This
precaution ensures that any truncations at the end of a stream will cause a connection failure, rather than
continuing with the next stream.
Performance/Security Trade-Offs. 0-RTT and 0.5-RTT significantly decrease communications latency,
but they yield weaker application security. 0-RTT traffic has weaker forward secrecy and is subject to
replays: if multiple servers may accept the connection and (as usual) do not share an anti-replay cache,
then they may all receive and process (prefixes of) the same early traffic data. This motivates our model with
multiple decryptors, and also requires the server application to defer some effects of early-data processing till
handshake completion. Also, since data is sent before ciphersuite negotiation, the client may use relatively
weak algorithms (or broken implementations) that the server would otherwise have a chance to refuse.

0.5-RTT incurs similar, lesser risks as the server sends data before the handshake completes. The server
is subject to 0-RTT truncation attacks if it starts sending data before receiving the client’s end of early
data. Also, if the server relies on a client signature, it should not send sensitive data before handshake
completion. In contrast with 0-RTT, sending 0.5-RTT traffic is a local configuration issue for the server;
the client receives 0.5-RTT data after completing the handshake and does not distinguish it from 1-RTT
data.

TLS 1.2 is routinely deployed with ‘FalseStart’, which is similar to 0.5-RTT but in the other direction,
the client may locally decide to start sending encrypted application data as soon as it can compute the keys,
before handshake completion. This places additional trust in the client’s ciphersuite whitelist, inasmuch as
sensitive data may be sent before confirming their correct negotiation with the server.
A Minimal Record Game We present a simplified, more liberal model of the Record that seeks to
abstract away from the details of how the connection evolves. This facilitates the statement of our theorem,
but as usual our results apply to the full F? implementation, which does carefully keep track of the sequence
of keys, as outlined at the end of this section.

We abstract the state of the connection by a context bitstring; as the handshake progresses, we con-
catenate more relevant handshake parameters to the context. For instance, after ClientHello, the context
consists of the client’s nonce nC and its proposed ciphersuites and key exchange values; after ServerHello,
it additionally contains the server nonce nS , algorithm choice, key exchange value, etc.

Instead of modeling duplex channels between clients and servers, we consider separate sequences of
streams in each direction. Our game (Figure 6) models re-keying and context extension for a sequence of
streams (all in the same direction), covering 0RTT, 0.5RTT, and 1RTT traffic, relying on the multi-instance
game SE = Multi(Lhse) (see §7).

The game has oracles Init and InitD for generating multi-stream encryptors and decryptors in their initial
state, indexed by n and m, respectively. We assume that their arguments determine the record algorithm.
Their state consist of a current context, a current stream number j, and a local map I from stream numbers

27

ClientC ServerS

Knows skC , psk Knows skS , psk

log0 log0
ClientHello(nC , gx, a0, . . .})

0-RTT Keys (encrypt-only):
kc0 = kdf(psk , log0)

0-RTT Keys (decrypt-only):
kc0 = kdf(psk , log0)

enck
c
0(Data(m0))

enck
c
0(Alert(end_of_early_data))log1 log1
ServerHello(nS , gy, a1, . . .)

Handshake Keys:
kch, k

s
h = kdf(psk , gxy, log1)

Handshake Keys:
kch, k

s
h = kdf(psk , gxy, log1)

log2 log2

enck
s
h(ServerCert-Finished(certS , . . .))

0.5/1-RTT Traffic Keys:
kc1, k

s
1 = kdf(psk , gxy, log2)

0.5/1-RTT Traffic Keys:
kc1, k

s
1 = kdf(psk , gxy, log2)

enck
s
1(Data(m0.5))

enck
c
h(ClientCert-Finished(certC , . . .))

Handshake Complete Handshake Complete
enck

c
1(Data(m1))

enck
s
1(Data(m2))

enck
c
1(KeyUpdate())

Update Keys (C → S):
kc2 = kdf(kc1)

Update Keys (C → S):
kc2 = kdf(kc1)

enck
c
2(Data(m3))

enck
s
1(Data(m4))

enck
c
2(Alert(close_notify))

enck
s
1(Alert(close_notify))

Duplex Data Stream:
C → S : m0,m1,m3

S → C : m0.5,m2,m4

Duplex Data Stream:
C → S : m0,m1,m3

S → C : m0.5,m2,m4

Figure 4: TLS 1.3 Draft-18 Protocol, seen from the viewpoint of the Record Protocol. Dotted arrows
represent zero or more (encrypted) application data fragments. Each key stands for an instance of LHSE.

to the value of the context when they were installed. We use variables ctx, j, and I to refer to the fields of
E[m] and D[n], respectively.

Oracles Extend and ExtendD allow the local context to be extended (concatenated) with new information

28

type state role = {ctx:context; j:int; epochs: seq (LHSE.state role)}
type encryptor = state Encrypt
type decryptor = state Decrypt
val init: c:ctx → ST (e:encryptor)

(ensures e.current = −1 ∧ e.context = ctx)
val initD: c:ctx → ST (d:decryptor)

(ensures d.current = −1 ∧ d.context = ctx)
val extend: e:encryptor → c:ctx → ST unit

(ensures e’.context = e.context + ctx)
val extendD: d:decryptor → c:ctx → ST unit

(ensures d’.context = d.context + ctx)

val install: e:encryptor → ST unit
val installD: d:decryptor → ST unit
val encrypt: c:encryptor → `:len → LHSE.fragment ` → ST record
val decrypt: c:decryptor → record → ST (`, LHSE.fragment `)

Figure 5: Simpler Record Interface Corresponding to Game

at any time.
Oracles Install and InstallD installs an LHSE instance (allocating it if it does not exist) for encryption and

decryption, respectively. Recall that calls to SE.Gen are memoized, so that an encryptor and a decryptor
share the same stream if and only if they agree on the stream sequence number and context.

Oracles Encrypt and Decrypt apply encryption and decryption to the currently-installed stream. Some
fragments are final: they terminate the stream and signal the need to install a new stream before continuing.

Definition 9 (Record). Let εRecord(A[qe, qd, qi]) be the advantage of an adversary A that makes at most qe
encryption queries and qd decryption queries for each of the qi LHSE instances created using install queries
in the game of Figure 6.

Theorem 5 (Record reduces to Lhse).

εRecord(A[qe, qd, qi]) ≤ qi εLhse(B[qe, qd]).

Our game complies with the idealized interface for LHSE and relies on its conditional idealization. If
b = 0, then the oracles operate purely on local state, and simply implement a real sequence of encrypted
streams, under the control of the record state machine. If b = 1, then we get perfect authentication of (a
prefix of) the whole sequence of streams of fragments. (This property is verified by typing our idealized
record implementation.) The ctx field of encryptors and decryptor represents their implicitly authenticated
shared context: unless there is an encryptor with a matching context, the ideal encryption log is empty
hence decryption will fail. In particular, as soon as the context includes ServerCert-Finished, and thus
the fresh TLS nonces nC and nS , we know that there is at most one encryptor and one decryptor.

More precisely, consider encryptor and decryptor states E[n] and D[m]. If E[n].I[j] = D[m].I[j] then
also E[n].I[j′] = D[m].I[j′] for any j′ < j. Thus, for instance, when D[m] receives a final fragment, we
know that E[n] and D[m] agree on the whole sequence of communicated fragment for the first j streams. By
Theorem 5 these guarantees also hold for the real record for any game adversary A, except with probability
εRecord(A).

29

Game Recordb(Lhseb(LHSE))
E ← ∅ D ← ∅
SE.Gen,SE.GenD,SE.Encrypt,SE.Decrypt

$← Multi(Lhseb)
return {Gen,Extend, Install,Encrypt,

GenD,ExtendD, InstallD,Decrypt}

Oracle Init(n)
if E[n] = ⊥
E[n]← {ctx← n; j ← 0;

I ← ∅}

Oracle InitD(m, ctx0)
if D[m] = ⊥
D[m]← {ctx← ctx0;

j ← 0; I ← ∅}

Oracle Extend(n, δ)
if E[n] exists
ctx← ctx+ δ

Oracle ExtendD(m, δ)
if D[m] exists
ctx← ctx+ δ

Oracle Install(n)
if E[n] exists with I[j] = ⊥
I[j]← (ctx, j)
SE.Gen(I[j])

Oracle InstallD(m)
if D[m] exists with I[j] = ⊥
I[j]← (ctx, j)
SE.GenD(I[j])

Oracle Encrypt(n, `, f)
if E[n] exists with I[j] 6= ⊥
v ← SE.Encrypt(I[j], `, f)
if (final f) j ← j + 1
return v

Oracle Decrypt(m, v)
if D[m] exists with I[j] 6= ⊥
f ← SE.Decrypt(I[j], d, v)
if f 6= ⊥ ∧ final f
j ← j + 1

return f

Figure 6: The TLS 1.3 Record Game

Application to 0RTT We briefly show how to control our game to model 0RTT and 0.5-RTT. For 0RTT,
the client is the encryptor and the server is the decryptor. Both use the encryptor index n as initial context,
representing the content of ClientHello, notably the fresh client random nC . Conversely, the decryptor
index m (including the fresh server random nS) is not included in the initial context of InitD. As both
parties install their first stream (j = 0) for 0RTT, this reflects that the underlying TLS key derivation (kc0
in Figure 4) depends only on client-side information. Thus, although 0RTT traffic is protected, it may be
decrypted by multiple server instances with different indexes m.

Calls to ExtendD and Extend reflect handshake communications in the other direction, as the ServerCert-
Finished stream is sent and received, causing ctx to be extended with (at least) m. Afterwards, as the
two parties successively install streams for the TLS keys kch, k

c
1, kc2, . . . , successful decryption guarantees

agreement on a context that includes the pair n,m. Thus, in this usage of our Record game at most one
server will successfully decrypt the first encrypted handshake fragment from the client, and from this point
all streams are one-to-one.
Application to 0.5-RTT The server is the encryptor, the client the decryptor and, since they both
have initial access to the first message exchange, we may select as index n that includes the client hello
and server hello messages and implicitly authenticate the pair nC , nS . Thus, there is at most one honest
client decryptor for 0.5-RTT and, from the client’s viewpoint, successful decryption of the first handshake

30

fragment ensures agreement on this context. Still (at least from the record’s viewpoint) the server is not
guaranteed there is a matching decryptor until it receives ClientCert-Finished in the other direction and
transitions to 1RTT.
Verified Implementation (Outline) Our TLS Record implementation supports sequences of streams
for the full protocol described in Figure 4 and its TLS 1.2 counterpart.
Stream Sequences As described in the game above, it maintains a current stream for each direction, and it
receives ‘extend’ and ‘install’ commands from the handshake protocol as the connection gets established.
Its indexes (ctx in the game) consist of a summary of the handshake context available at the time of
key derivation (always including the algorithms to use). In contrast with our game, which models all
communications in a single direction, our code supports ‘duplex’ communications. This is necessary, for
instance, for synchronizing key updates and connection closure between clients and servers. Our code also
maintains a small (type-based) state machine that controls the availability of the current streams for sending
application data.
Re-keying and Corruption The state machine enforces a limit on the maximum number of fragments that
can be sent with one key to prevent sequence number overflows and account for the birthday bound weakness
of AES-GCM. On key updates we delete old keys and model the corruption of individual streams using
leak and coerce functions for keys. This is in keeping with the static corruption modeling of miTLS, e.g. to
account for insecure handshake runs.
Fragment API Our code for the record is parameterized by a type of abstract application-data plaintexts,
indexed by a unique stream identifier and an apparent fragment length. Type abstraction guarantees that,
if the stream identifier is safe (a property that depends on the handshake and key derivation process), the
idealized TLS implementation never actually accesses their actual length and contents, a strong and simple
confidentiality property.

Our API has a configuration to control 0-RTT and 0.5-RTT as the connection is created. In particular,
0-RTT plaintexts have their own type, (indexed by an identifier that describe their 0-RTT context) which
should help applications treat it securely. Conversely, 0.5-RTT is modeled simply by enabling earlier
encryption of 1-RTT traffic.
Message API Our code also has a higher-level API with messages as (potentially large) bytestrings instead
of individual fragments. As usual with TLS, message boundaries are application specific, whereas applica-
tions tend to ignore fragment boundaries. Nonetheless, our code preserves apparent message boundaries,
never caches or fragments small messages, and supports message length-hiding by taking as inputs both the
apparent (maximal) size `max of the message and its private (actual) size `m. It has a simple fragmentation
loop, apparently sending up to 214 bytes at each iteration, starting with `max− `m bytes of padding follows
by the actual data. (This ensures that an application that waits for the whole message never responds
before receiving the last fragment.) We do not model de-fragmentation on the receiving end; our code
delivers fragments as they arrive in a buffer provided by the application for reassembling its messages.

The correctness and security of this construction on top of the fragment API is verified by typing,
essentially abstracting sequences of fragments into sequences of bytes for the benefit of the application,
and turning close-notify alert fragments into end-of-files. (See also [24] for a cryptographic treatment of
fragmentation issues.)

31

Module Name Verification Goals LoC % annot ML LoC Time
StreamAE Game StAEb from §6 292 30% 339 519s
AEADProvider Safety (dispatcher from OCaml to Crypto.AEAD

or OpenSSL)
299 10% 583 349s

Crypto.AEAD Proof of Theorem 2 from §5 2,806 87% 345 1267s
Crypto.Plain Plaintext module for AEAD 130 20% 63 13s
Crypto.AEAD.Encoding AEAD encode function from §5 and injectivity

proof
395 30% 172 88s

Crypto.Symmetric.PRF Game PrfCtrb from §4 511 30% 489 155s
Crypto.Symmetric.Cipher Agile PRF functionality 117 10% 131 9s
Crypto.Symmetric.AES Safety (concrete reference implementation of

block ciphers)
561 10% 1,024 62s

Crypto.Symmetric.Chacha20 205 10% 172 38s
Crypto.Symmetric.UF1CMA Game MMac1b from §3 420 30% 303 54s
Crypto.Symmetric.MAC Agile MAC functionality 312 10% 261 73s
Crypto.Symmetric.GF128 GF (128) polynomial evaluation and GHASH en-

coding
264 20% 268 33s

Crypto.Symmetric.Poly1305 GF (2130−5) polynomial evaluation and Poly1305
encoding

1,297 60% 860 465s

Crypto.Symmetric.Poly1305.* Bignum library and supporting lemmas
for the functional correctness of field operations

4,264 80% 1310 450s

Crypto.Buffer.* A verified model of mutable buffers (implemented
natively)

1,870 N/A 0 625s

Total 13,743 56.5% 6,320 1h 10m

Table 2: Modules in our verified record layer implementation

9 Experimental evaluation

We evaluate our reference implementation of the TLS record layer both qualitatively (going over the verified
goals of the various modules and how they relate to the games presented in the paper, and checking that
our implementation interoperates with other TLS libraries) and quantitatively (measuring the verification
and runtime performance).
Verification evaluation Table 2 summarizes the modular structure of our code. Most of the verification
burden comes from the security proof of AEAD (totaling approximately 1900 lines of annotation out of a
total of about 2500 lines of F?) and the functional correctness proof of the MAC implementations (totaling
over 5000 lines of annotations and lemmas). For the latter, we implement a new big number library to
verify the low-level implementations of various mathematical operations (such as point multiplication on
elliptic curves or multiplication over finite fields) using machine-sized integers and buffers. We use it to
prove the correctness of the polynomial computations for Poly1305 and GHASH.
Current limitations At the time of writing, our code for the record layer still includes a few assumptions
that we are in the process of eliminating. Specifically, in Crypto.Symmetric.PRF, we admit a simple
integer-normalization invariant (these integers are immutable, but not yet tracked by our invariant). We
also have five local assumptions related to memory allocation and write effects, all due to a discrepancy in
the style of specification used for low-level buffers in two modules of our development. Aside from these, our
functional correctness proof of low-level arithmetic over GF(128) is not integrated with our main AEAD
security development. Finally, in particular to experiment with other AEAD providers in the next section,
the TLS-specific stateful encryption in StreamAE is verified on top of an idealized AEAD interface that
slightly differs from the one exported from our idealized Crypto.AEAD construction. For instance, the

32

latter uses a lower-level memory model and a mutable representation of fragments. These limitations are
minor with regards to the amount of code verified so far.

Besides, the record layer is part of a larger, partially-verified codebase—notably, we leave a complete
verification of the TLS 1.3 handshake and its integration with our code as future work.
Interoperability Our record implementation supports both TLS 1.3 and 1.2 and exposes them through a
common API. We have tested interoperability for our TLS 1.2 record layer with all major TLS implementa-
tions. For TLS 1.3 draft-14, we tested interoperability with multiple implementations, including BoringSSL,
NSS, BoGo, and Mint, at the IETF96 Hackathon. At the time of writing, there are few implementations of
TLS 1.3 draft-18, but we tested interoperability with Mint. In all cases, our clients were able to connect to
interoperating servers using an ECDHE or PSK_ECDHE key exchange, then to exchange data with one
of the following AEAD algorithms: AES256-GCM, AES128-GCM, and ChaCha20-Poly1305. Similarly, our
servers were able to accept connections from interoperating clients that support the above ciphersuites.
Performance We evaluate the performance of our record layer implementation at two levels. First, we
compare our implementation of AEAD encryption extracted to C using an experimental backend for F? to
OpenSSL 1.1.0 compiled with the no−asm option, disabling handwritten assembly optimizations. Our test
encrypts a random payload of 214 bytes with 13 bytes of constant associated data. We report averages over
1000 runs on an Intel Core i7 4600U CPU (2.1GHz) running Linux.

Crypto.AEAD OpenSSL
ChaCha20-Poly1305 17.95 cycles/byte 7.20 cycles/byte
AES256-GCM 454.16 cycles/byte 24.08 cycles/byte
AES128-GCM 357.23 cycles/byte 20.82 cycles/byte

Our implementation is 17-19 times slower than OpenSSL for AES-GCM and 2.5 times slower for ChaCha20-
Poly1305. Note that the performance of custom assembly implementations can be signicantly better.
OpenSSL with assembly can perform ChaCha20-Poly1305 in about one cycle per byte and can do AES-
GCM in a small fraction of a cycle per byte.

Next, we measure the throughput of our record layer integrated into miTLS by downloading one gigabyte
of random data from a TLS server on the local network. We compare two different integration methods:
first, we extract the verified record layer in OCaml, and compile it alongside the OCaml-extracted miTLS.
Then, we build an F? interface to the C version of our record implementation and call it from miTLS.
We compare these results with the default AEAD provider of miTLS (based on OpenSSL 1.1.0 with all
optimizations), and curl (which uses OpenSSL for the full TLS protocol).

OCaml C OpenSSL curl
ChaCha20-Poly1305 74 KB/s 69 MB/s 354 MB/s 440 MB/s
AES256-GCM 68 KB/s 2.2 MB/s 398 MB/s 515 MB/s
AES128-GCM 89 KB/s 2.3 MB/s 406 MB/s 571 MB/s

We observe that miTLS is not a limiting factor in these benchmarks as its performance using the OpenSSL
implementation of AEAD encryption is comparable to that of libcurl.

Unsurprisingly, the OCaml version of our verified implementation performs very poorly. This is due
to the high overhead of both memory operations and arithmetic computations in the OCaml backend of
F? (which uses garbage-collected lists for buffers, and arbitrary-precision zarith integers). The C extracted
version is over 30,000 times faster, but for AES, remains far slower than the Intel hardware-accelerated
assembly version in OpenSSL. The comparison is fairer for ChaCha20, where we achieve 20% of the OpenSSL
throughput.

33

Although our code is optimized for verification and modularity rather than performance, we do not
believe that we can close the performance gap only by improving F? code. Instead, for performance-critical
primitives such as AES, we intend to selectively link our F? code with assembly code proven to correctly
implement a shared functional specification. We leave this line of research for future work.

References

[1] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS and DTLS record protocols,”
in 2013 IEEE Symposium on Security and Privacy, 2013, pp. 526–540.

[2] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Verifiable side-channel security of crypto-
graphic implementations: Constant-time MEE-CBC,” in 23rd International Conference on Fast Soft-
ware Encryption, FSE 2016, 2016, pp. 163–184.

[3] C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann, “Augmented secure channels and
the goal of the TLS 1.3 record layer,” in 9th International Conference on Provable Security, ProvSec
2015, 2016, pp. 85–104.

[4] G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, and S. Zanella-Béguelin, “Probabilistic rela-
tional verification for cryptographic implementations,” in 41st Annual ACM Symposium on Principles
of Programming Languages, POPL 2014, 2014, pp. 193–206.

[5] M. Bellare and P. Rogaway, “The security of triple encryption and a framework for code-based game-
playing proofs,” in Advances in Cryptology – EUROCRYPT 2006, 2006, pp. 409–426.

[6] ——, “Code-based game-playing proofs and the security of triple encryption,” Cryptology ePrint
Archive, Report 2004/331, 2004, http://eprint.iacr.org/2004/331.

[7] M. Bellare and B. Tackmann, “The multi-user security of authenticated encryption: AES-GCM in TLS
1.3,” in Advances in Cryptology – CRYPTO 2016, 2016, pp. 247–276.

[8] M. Bellare, O. Goldreich, and A. Mityagin, “The power of verification queries in message
authentication and authenticated encryption,” IACR Cryptology ePrint Archive, vol. 2004, p. 309,
2004. [Online]. Available: http://eprint.iacr.org/2004/309

[9] D. J. Bernstein, “The Poly1305-AES message-authentication code,” in 12th International Workshopo
on Fast Software Encryption, FSE 2005, 2005, pp. 32–49.

[10] ——, “Stronger security bounds for Wegman-Carter-Shoup authenticators,” in Advances in Cryptology
– EUROCRYPT 2005, 2005, pp. 164–180.

[11] K. Bhargavan and G. Leurent, “On the practical (in-)security of 64-bit block ciphers: Collision attacks
on HTTP over TLS and OpenVPN,” Cryptology ePrint Archive, Report 2016/798, 2016, http://eprint.
iacr.org/2016/798.

[12] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub, “Implementing TLS with verified
cryptographic security,” in 2013 IEEE Symposium on Security and Privacy, 2013, pp. 445–459.

[13] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, , A. Pironti, and P.-Y. Strub, “Triple handshakes and
cookie cutters: Breaking and fixing authentication over TLS,” in 2014 IEEE Symposium on Security
and Privacy, 2014, pp. 98–113.

34

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/309
http://eprint.iacr.org/2016/798
http://eprint.iacr.org/2016/798

[14] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella-Béguelin, “Proving
the TLS handshake secure (as it is),” Cryptology ePrint Archive, Report 2014/182, 2014, http://eprint.
iacr.org/2014/182/.

[15] H. Böck, “Wrong results with Poly1305 functions,” https://mta.openssl.org/pipermail/openssl-dev/
2016-March/006413, 2016.

[16] H. Böck, A. Zauner, S. Devlin, J. Somorovsky, and P. Jovanovic, “Nonce-disrespecting adversaries:
Practical forgery attacks on GCM in TLS,” Cryptology ePrint Archive, Report 2016/475, 2016, http:
//eprint.iacr.org/2016/475.

[17] C. Boyd, B. Hale, S. F. Mjølsnes, and D. Stebila, “From stateless to stateful: Generic authentication
and authenticated encryption constructions with application to TLS,” in Topics in Cryptology – CT-
RSA 2016, 2016, pp. 55–71.

[18] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated analysis and verification of
TLS 1.3: 0-RTT, resumption and delayed authentication,” in 2016 IEEE Symposium on Security and
Privacy, 2016, pp. 470–485.

[19] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi, “Computationally sound compositional logic for
key exchange protocols,” in 19th IEEE Computer Security Foundations Workshop, (CSFW-19 2006),
5-7 July 2006, Venice, Italy, 2006, pp. 321–334.

[20] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic analysis of the TLS 1.3 hand-
shake protocol candidates,” in 22nd ACM Conference on Computer and Communications Security,
2015, pp. 1197–1210.

[21] ——, “A cryptographic analysis of the TLS 1.3 draft-10 full and pre-shared key handshake protocol,”
http://eprint.iacr.org/2016/081, 2016.

[22] T. Duong and J. Rizzo, “Here come the ⊕ ninjas,” Available at http://nerdoholic.org/uploads/dergln/
beast_part2/ssl_jun21.pdf, May 2011.

[23] M. J. Dworkin, “Recommendation for block cipher modes of operation: Galois/Counter mode (GCM)
and GMAC,” National Institute of Standards & Technology, Tech. Rep. SP 800-38D, 2007.

[24] M. Fischlin, F. Günther, G. A. Marson, and K. G. Paterson, “Data is a stream: Security of stream-based
channels,” in Advances in Cryptology - CRYPTO 2015, 2015, pp. 545–564.

[25] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi, “Key confirmation in key exchange: A formal
treatment and implications for TLS 1.3,” in 2016 IEEE Symposium on Security and Privacy, 2016, pp.
197–206.

[26] C. Fournet, M. Kohlweiss, and P. Strub, “Modular code-based cryptographic verification,” in 18th ACM
Conference on Computer and Communications Security, CCS 2011, 2011, pp. 341–350.

[27] F. Giesen, F. Kohlar, and D. Stebila, “On the security of TLS renegotiation,” in 2013 ACM Conference
on Computer and Communications Security, CCS 2013, 2013, pp. 387–398.

[28] P. Gutmann, “Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS),” IETF RFC 7366, 2014.

[29] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of TLS-DHE in the standard model,”
in Advances in Cryptology – CRYPTO 2012, 2012, pp. 273–293.

35

http://eprint.iacr.org/2014/182/
http://eprint.iacr.org/2014/182/
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413
http://eprint.iacr.org/2016/475
http://eprint.iacr.org/2016/475
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf

[30] T. Jager, J. Schwenk, and J. Somorovsky, “On the security of TLS 1.3 and QUIC against weaknesses
in PKCS#1 v1.5 encryption,” in 22nd ACM Conference on Computer and Communications Security,
2015, pp. 1185–1196.

[31] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and D. Venturi, “(de-) constructing TLS 1.3,” in
Progress in Cryptology–INDOCRYPT 2015. Springer, 2015, pp. 85–102.

[32] H. Krawczyk, “LFSR-based hashing and authentication,” in Advances in Cryptology – CRYPTO 1994,
1994, pp. 129–139.

[33] ——, “The order of encryption and authentication for protecting communications (or: how secure is
SSL?),” Cryptology ePrint Archive, Report 2001/045, 2001, http://eprint.iacr.org/2001/045.

[34] ——, “A unilateral-to-mutual authentication compiler for key exchange (with applications to client
authentication in TLS 1.3),” in 23rd ACM Conference on Computer and Communications Security,
CCS 2016, 2016.

[35] H. Krawczyk and H. Wee, “The OPTLS protocol and TLS 1.3,” Cryptology ePrint Archive, Report
2015/978, 2015, http://eprint.iacr.org/2015/978.

[36] H. Krawczyk, K. G. Paterson, and H. Wee, “On the security of the TLS protocol: A systematic
analysis,” in Advances in Cryptology – CRYPTO 2013, 2013, pp. 429–448.

[37] A. Luykx and K. G. Paterson, “Limits on authenticated encryption use in TLS,” Personal webpage:
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf, 2015.

[38] D. McGrew and J. Viega, “Flexible and efficient message authentication in hardware and software.”
Unpublished draft. Available online at http://www.cryptobarn.com/.

[39] D. McGrew, “An interface and algorithms for authenticated encryption,” IETF RFC 5116, 2008.

[40] B. Möller, T. Duong, and K. Kotowicz, “This POODLE Bites: Exploiting The SSL 3.0 Fallback,”
Available at https://www.openssl.org/~bodo/ssl-poodle.pdf, 2014.

[41] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,” IETF RFC 7539, 2015.

[42] K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does matter: Attacks and proofs for the
TLS record protocol,” in Advances in Cryptology – ASIACRYPT 2011, 2011, pp. 372–389.

[43] J. Rizzo and T. Duong, “The CRIME Attack,” September 2012.

[44] J. Salowey, A. Choudhury, and D. McGrew, “AES Galois Counter Mode (GCM) cipher suites for TLS,”
IETF RFC 5288, 2008.

[45] P. Sarkar, “A trade-off between collision probability and key size in universal hashing using polynomi-
als,” Cryptology ePrint Archive, Report 2009/048, 2009, http://eprint.iacr.org/2009/048.

[46] V. Shoup, “On fast and provably secure message authentication based on universal hashing,” in Ad-
vances in Cryptology – CRYPTO 1996, 1996, pp. 313–328.

[47] B. Smyth and A. Pironti, “Truncating TLS connections to violate beliefs in web applications,” Inria,
Tech. Rep. hal-01102013, Oct. 2014. [Online]. Available: https://hal.inria.fr/hal-01102013

[48] J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,” in 23rd ACM Conference on Computer
and Communications Security, CCS 2016, 2016.

36

http://eprint.iacr.org/2001/045
http://eprint.iacr.org/2015/978
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.cryptobarn.com/
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://eprint.iacr.org/2009/048
https://hal.inria.fr/hal-01102013

[49] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin, “Dependent types and multi-
monadic effects in F*,” in 43nd ACM Symposium on Principles of Programming Languages, POPL
2016, 2016, pp. 256–270.

[50] R. Święcki, “ChaCha20/Poly1305 heap-buffer-overflow,” CVE-2016-7054, 2016.

[51] P. Swire, J. Hemmings, and A. Kirkland, “Online privacy and ISPs: ISP access to consumer data is
limited and often less than access by others,” Georgia Tech, Tech. Rep., 2016.

[52] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” in 2nd USENIX Workshop on Electronic
Commerce, WOEC 1996, 1996, pp. 29–40.

Security proofs

Section 3

Claim 1. IND-UF-1CMA implies UF-1CMA when qv ≥ 1 and random tags are neither necessary nor
sufficient for unforgeability.

(i) To see the latter, consider the mac(k,m) function that just returns the random key k as its tag for
every message. Returning k for t∗ break UF-1CMA but the scheme nevertheless satisfies the randomness
requirement for A[`m, 0] adversaries. (ii) To see the former, consider the Mac1b game with r = 0 (denoted
Mac1b0). We can relate Mac1b0 to the standard unforgeability definition as follows: clearly, an adversary
who wins the UF-1CMA game can win the Mac1b0 game by submitting his forgery (m, t) to Verify, which
returns false if and only if b = 1. Conversely, an adversary that wins the Mac1b0 game with advantage
εMac10(A[`m, qv]) must query Verify on at least one forgery with the same probability, since the adversary’s
view is otherwise independent of b. In the reduction, B[`m] guesses in which of the qv Verify queries A
submits his first forgery and return false for all prior queries.1 It follows that:

εMac10(A[`m, qv]) ≤ qv εUF-1CMA(B[`m]).

Proof of Lemma 1. Let Hi, i ∈ [0, qi] be hybrids of MMac11 that only idealize the first i instances: that is,
the first i queries to Hi.Keygen behave as MMac1.Keygen while later queries behave as MMac1.Coerce(n, k

$←
byte`k). In particular, Hqi is equivalent to MMac1 as all keys are idealized, and H0 is equivalent to MMac0

as no key is idealized.
By the triangle inequality:

A[`m, qv, qi]) ≤|Pr[A(Hqi) = 1]− Pr[A(Hqi−1) = 1]|
+|Pr[A(Hqi−1) = 1]− · · ·
+|Pr[A(H1) = 1]− Pr[A(H0) = 1]|

In the reduction, B picks i at random between 1 and qi and uses its oracles to Mac1b such that A either
interacts with Hi or Hi−1 depending on b. B returns the output of A.

1See [8] for a detailed discussion of this proof strategy, and the reason why strong unforgeability, i.e. log 6= (m?, t?) and not
just ∀t. log 6= (m?, t), is necessary.

37

By definition, εMac1(B[`m, qv]) is:

1

qi

(
qi∑
i=1

|Pr[AHi = 1]− Pr[AHi−1 = 1]|

)

and therefore, A[`m, qv, qi]) ≤ qi εMac1(B[`m, qv]).
Note that we could express a tighter bound in case we had an upper bound for the number of verification

queries that A makes per instance, which could be as low as dqv/qie. We directly prove MMac1 security for
GHASH and Poly1305, so this has no effect on our main result.

Proof of Lemma 2. In the reduction, B guesses in which Verify query A might make its first forgery (say,
query number q). This guess is correct with probability 1/qv. Note that a successful A may distinguish
purely based on the tag and never submit a forgery; in that case, the simulation provided by B is perfect
until the end of the experiment. B simulates the qv verification queries by returning 0 or 1 depending on
whether the tag-message pair was generated using a query to Mac. If B guessed correctly, the simulation
is perfect up to the submission of the forgery. Now B submits the message-tag pair of the query q to its
single-call Verify oracle. Let b′′ be the result of this query, and b′ be the output of A after running to
completion with all further Verify oracles simulated as before.
B output b′ ∧ ¬b′′ as its guess. If the qth query result indicates a forgery, then clearly b = 0, otherwise

we either guessed q wrongly or the adversary did not query on a forgery and so b′ is the result of a perfect
simulation.

In both cases, conditioned on having guessed correctly, the success probability of B is greater equal the
success probability of A and thus 1/qv · εMMac1(A[`m, qv, qi]) ≤ εMMac1(B[`m, 1, qi]).

Proof of Theorem 1. We make use of Lemma 2 and first prove the bound d·τ
|R| for an adversary that makes

only a single Verify query. We refer to the instance in which the Verify query is made as the target instance.
Game 0 For a given r and message m, we can compute s and t from one another. Thus, we first perform
the following game transformation (with no security loss):

Oracle Mac(n,m)
if keys[n] = ⊥ return ⊥
if log[n] 6= ⊥ return ⊥
k ← keys[n]
r‖s← k
if n /∈ H
t← MAC.mac(k,m)

else if b ∨ vlog[n] = ⊥
t

$← byte`t

else

t
$← byte`t

(v∗, t∗,m∗)← vlog[n]
s′ ← t� hashr(m)
v ← t? = hashr(m

?)� s′

if v? 6= v
t← MAC.mac(k,m)

log[n]← (m, t)
return t

Oracle Verify(n,m?, t?)
if keys[n] = ⊥ return ⊥
k ← keys[n]
r‖s← k
if n /∈ H
v? ← MAC.verify(k,m?, t?)

else if b
v? ← log[n] = (m?, t?)

else if log[n] 6= ⊥
(m, t) = log[n]
s′ ← t� hashr(m)
v? ← t? = hashr(m

?)� s′

else
v? ← t? = hashr(m

?)� s
vlog[n]← (v?, t∗,m∗)

return v?

38

When answering Mac before Verify, instead of sampling the one-time pad s and adding it to finalize the
WCS MAC, we sample instead the tag t that will be released. For verification we compute s′ from t, m
and r.

When answering Verify before Mac, we verify as before, but store (v?, t?,m?) in an additional table. For
Mac we sample the tag t at random, and compute its s′ from t, m and r. Only if the answer we would have
given in verification differs between s and s′, we recompute the tag using s.
Game 1 For the target instance, we can distinguish two cases: either the Mac oracle or the Verify oracle
gets queried first. Consider the following game in which idealizations are marked by (∗#∗):

Oracle Mac(n,m)
if keys[n] = ⊥ return ⊥
if log[n] 6= ⊥ return ⊥
k ← keys[n]
r‖s← k
if n /∈ H
t← MAC.mac(k,m)

else if b ∨ vlog[n] = ⊥
t

$← byte`t

else

t
$← byte`t

(∗3∗)
log[n]← (m, t)
return t

Oracle Verify(n,m?, t?)
if keys[n] = ⊥ return ⊥
k ← keys[n]
r‖s← k
if n /∈ H
v? ← MAC.verify(k,m?, t?)

else if b
v? ← log[n] = (m?, t?)

else if log[n] 6= ⊥
(∗1∗)
v? ← log[n] = (m?, t?)

else
(∗2∗)
v? ← 0
vlog[n]← (v?, t∗,m∗)

return v?

We separately bound the probabilities for the following two events: (∗1∗) The oracle call to Verify(n,m?, t?)
accepts a forgery after calling Mac(n,m), (∗2∗ or ∗3∗) The oracle call to Verify(n,m∗, t?) accepts a forgery
before calling Mac(n,m) or the Mac query has to correct its tag t, because v 6= v?.

This second event requires the adversary to guess either the value s or the value t, both sampled at
random, to set v? or v to 1 respectively. We bound this probability by 2−`t+1.

The first event dominates the probability. The adversary wins if and only if t?�t = hashr(m
?)�hashr(m)

for m 6= m?. This probability is bound by the ε-almost-�-universal property of GHASH and Poly1305.

Definition 10. A family of function {hashr}r∈R is ε-almost-�-universal, if ∀x 6= x′ ∈ Fd, y ∈ byte`t:

Pr
r←R

[hashr(x)� hashr(x
′) = y] ≤ ε

Theorem 6. The family of function {hashr}r∈R with hashr = tag(
∑

i=1..dmd−ir
i in F) is d·τ

|R| -almost-�-
universal for

τ =

{
8 for · , tag, F and R of Poly1305
1 for · , tag, F and R of GHASH

Proof. We start with a lemma specific to the Poly1305 truncation, which leads to τ = 8. For other variants
of the construction, e.g. by further truncating the tag, any similar lemma would suffice in the proof below.

Lemma 4. For all a, a? ∈ 0..2130 − 6 and y ∈ 0..2128 − 1, if a? − amod 2128 = y, then a? − a = y+ δ · 2128
in F for some δ ∈ −4..3.

39

Proof. The hypothesis is equivalent to (a? mod 2128)− (a? mod 2128) = y + γ · 2128 for some γ ∈ −1..0, so
we can use δ = γ + a?/2128 − a/2128.

We have that hashr(x)� hashr(x
′) = y if and only if∑
i=1..d(xd−i − x′d−i)ri − yδ = 0 in F (1)

for some yδ = y + δ · 2128 with δ ∈

{
−4..3 for Poly1305
0 for GHASH

Equation 1, defines a non-null polynomial of degree at most d and tests whether r is a root of that
polynomial. Since each polynomial is not null, it has at most d roots, and the equality holds with probability
at most d/|R|. We arrive at the bound stated in the theorem by multiplying by the number of possible
polynomials in the construction-specific step.

Section 4

Proof of Lemma 3. When A queries EvalEnx or EvalDex (they are exactly the same except for parameter
names), B calls Prfb.Eval, XORs the value provided by A, and truncates. To compute k0 when j0 = 1, B
queries Prf.Eval on 0`b . Whenever A queries PrfCtr.EvalKey on nonce j0‖n, B queries Prf.Eval on the same
input, prepends k0, and truncates.

Analysis The requirement j > j0 in EvalEnx and EvalDex, guarantees that EvalKey uses disjoint parts of
the PRF’s domain regardless of j0. The use of j0‖n in EvalKey also guarantees that k0 is computed using
a disjoint element of the domain. As the simulation is perfect B can forward the output of A as its own
guess, making in total qb + qg + j0 queries to Prf.

Section 5

Proof of AEAD construction. As a first step of the proof of AEAD security we model the composition of
cryptographic functionalities in our implementation using abstract keys with state.

Composing auxiliary games We introduce the following composed game PrfCtrb(PRF,MMac1b(MAC))
that restrict adversaries from accessing the real MAC keys. This will allow us to idealize both the PRF and
the MAC functionalities in order to idealize the authentication of ciphertexts:

Game PrfCtrb(PRF,MMac1b)
T ← ∅; M ← ∅;
(Mac,Verify,

Keygen,Coerce)← MMac1b()

k
$← PRF.keygen()

if j0 ∧ ¬b
o← PRF.eval(k, 0`b)
k0 ← truncate(o, `k0)
MMac1.k0 ← k0

return {EvalKey,EvalEnx,
EvalDex,Mac,Verify}

Oracle EvalKey(j‖n)
if j 6= j0 return ⊥
if T [j‖n] = ⊥
if b

Keygen(n)
else
o← PRF.eval(k, j‖n)
km ← truncate(k0‖o, `k)
Coerce(n, km)

T [j‖n]← >

40

with the same EvalEnx and EvalDex oracles as in §4. Thus, the adversary has access to the oracles EvalKey,
EvalEnx and EvalDex of the PrfCtrb game; in addition, for every nonce n queried to EvalKey, the adversary
is given access to oracles Mac and Verify of the MMac1 game. In the composed game, the adversary is not
given direct access to the MAC keys; instead the game calls MMac1.Coerce to turn PRF blocks into MAC
keys.

When it is clear from the context we will omit the game parameters PRF,MAC and instead write
PrfCtrb(MMac1b). Both the PrfCtrb and the MMac1b components of the game use the same random bit
b to determine the winning condition. However, we commonly use composed games in reduction proofs
where some component uses a fixed value of b, which we write as superscript. For instance, we may write
PrfCtrb(MMac10) to compose PrfCtr with only the real variant of MMac1b.

Lemma 5 (PrfCtr(MMac1) reduces to MMac1 and Prf). Given A against PrfCtr(MMac1), we construct B
against Prf and C against MMac1 such that:

εPrfCtr(MMac1)(A[qb, qi, `m, qv]) ≤ εPrf(B[qb + qi + j0])

+εMMac1(C[`m, qv, qi])

Proof. We write APrfCtrb(MMac1b)) to refer to the adversary’s output bit when interacting with such a game.
By definition, εPrfCtr(MMac1)(A[qb, qi, `m, qv]) is:

| Pr[APrfCtr1(MMac11) = 1]− Pr[APrfCtr0(MMac10) = 1] |

By the triangle inequality:

| Pr[APrfCtr1(MMac11)=1]−Pr[APrfCtr0(MMac11)=1] |

≤| Pr[APrfCtr1(MMac11)=1]−Pr[APrfCtr1(MMac10)=1] |

+ | Pr[APrfCtr1(MMac10)=1]−Pr[APrfCtr0(MMac10)=1] |

This justifies the game transformation that first switches from PrfCtrb(MMac10) to PrfCtrb(MMac11). We
bound the difference:

| Pr[APrfCtr1(MMac11) = 1]− Pr[APrfCtr1(MMac10) = 1] |
by εMMac1(C[`m, qv, qi]), where C runs A against the game PrfCtr1(MMac1b) by simulating PrfCtr1 and
returning the output of A. Similarly, we bound the difference:

| Pr[APrfCtr1(MMac10) = 1]− Pr[APrfCtr0(MMac10) = 1] |

by εPrfCtr(B[qb, qi]), where B runs A against the game PrfCtrb(MMac10) by simulating MMac10 and returning
the output of A. We conclude by applying Lemma 3.

We can similarly define a composed game PrfCtrb,b
′
(MMac1b) for the specialized game PrfCtrb,b

′
. Our

proof uses the following lemma about PrfCtr1,b
′
, which can be lifted to PrfCtr1,b

′
(MMac11).

Lemma 6 (PrfCtr1,b
′
has 0 advantage). Let PrfCtr1,b

′
be the PrfCtr game using instead oracles EvalEnx′,

EvalDex′ with b set to 1 and A guessing instead b′.
For all A we have εPrfCtr′(A) = 0.

Proof. Queries to EvalEnx′ and EvalDex′ are answered differently. The condition T [j‖n] = ⊥ ensures that
A can query EvalEnx′ successfully only once. B still calls Prf.Eval, XORs p, and truncates. But as b is set,
both branches return random values independently of b′. EvalDex′ is already independent of b′.

41

Main proof The proof proceeds in a sequence of game steps.
Game 0 is defined as G0 = AeadCtr(PrfCtr0(MMac10)): by inlining the real versions of EvalPad, Mac and
Verify from PrfCtr0(MMac10), one can easily see that this game is identical to Aead0(AEAD), hence we have
that Pr[AAead0

= 1] = Pr[AG0 = 1].
Game 1 is defined as G1 = AeadCtr(PrfCtr1(MMac11)). Game 0 and Game 1 are the same game except
for the bit b of PrfCtr, so a reduction A′ can simply simulate the game and returns the output of A as its
guess. Therefore:

|Pr[AG1[qe, qd, `p, `a] = 1]− Pr[AG0[qe, qd, `p, `a] = 1]|

= εPrfCtr(MMac1)(A′[qe
(⌈

`p
`b

⌉)
, qe + qd, `p + `a + 46, qd])

The implementation inlined into Game 1 has random tags and one-time-pads and the MAC is perfectly
unforgeable. We could now conclude that in this implementation, not only the pads, but the full ciphertexts
are random. This, however, requires us to reason about the various encoding steps (splitting the plaintext
and splicing the ciphertext taking into account the truncated block), to check that we never apply the
same pad twice, and to show that decryption is not revealing information about the plaintext blocks. We
implement this information-theoretic step of the proof in F?, where we can get assurance that we capture
the correct implementation details in the real implementation (by running it on known test vectors).
Game 2 is defined as G2 = AeadCtr(PrfCtr1,0(MMac11)). Game 1 and Game 2 are perfectly equivalent.

Proof. EvalEnx′ calls EvalEnx after checking T [j‖n] = ⊥. We will show that this restriction is already
enforced by AeadCtr.

Similarly for every call to EvalDec we will show that the restriction T [j‖n] = (p, c) is already enforced
by AeadCtr when the bit b of PrfCtr is set. In this case decryption using ⊕ in G1 already leads to the same
result as the lookup in T of G2.

We prove both restrictions on AeadCtr using an F? invariant that relates the content of the table C of
AeadCtr to the log of MMac1:

∀n.(C[n] = ⊥ =⇒ ∀i 6= 0.T [j0 + i‖n] = ⊥ ∧ log[n] = ⊥) ∧
(C[n] 6= ⊥ =⇒ let (a, p, c‖t) = C[n] in

p = fst(T [j0 + 1‖n]) ‖ . . . ‖ fst(T [j0 + d|p|/`be‖n]) ∧
c = snd(T [j0 + 1‖n]) ‖ . . . ‖ snd(T [j0 + d|p|/`be‖n]) ∧
log[n] = (encode(c, a), t))

For the first restriction, the AeadCtr game guarantees that C[n] = ⊥ upon calling Encrypt, consequently,
T [j‖n] = ⊥ upon calling EvalEnx.

For the second restriction, the MMac1 game guarantees that Verify only succeeds, if encode([cj∈[1,r]], a)
was recorded in log by a call to Encrypt. We can thus conclude by the injectivity of encode that the
restriction holds.

Game 3 is defined as G3 = AeadCtr(PrfCtr1,1(MMac11)). Game 2 and Game 3 are perfectly equivalent by
Lemma 6. Together we have Pr[AG3 = 1]− Pr[AG1 = 1] = 0.

Note that the condition T [j‖n] = (p, c) in EvalDex′(j‖n, c) restricts decryption to those cases where
decryption using ⊕ when b′ = 0 would already lead to the same result as the table lookup.

42

From the invariant we also infer that Pr[AG3 = 1] = Pr[AAead1
= 1] and that the size of the PRF

table T is
∑|C|

i=1C[ni].|c| = |T |. Ciphertexts thus consists of random PRF blocks that are never repeated.
Consequently, they are themselves indistinguishable from random. Summarizing the game steps

εAead(A[qe, qd, `p, `a]) = Pr[AAead1

= 1]− Pr[AAead0

= 1]

≤ |Pr[AG3 = 1]− Pr[AG1 = 1]| +
|Pr[AG1 = 1]− Pr[AG0 = 1]|

= εPrfCtr(MMac1)(A′[qe
⌈
`p
`b

⌉
, qe + qd, `p + `a + 46, qd])

≤ εPrf(B[qb]) +
εMMac1(C[`p + `a + 46, qd, qe + qd])

With qb = qe

(⌈
`p
`b

⌉)
+ qe + qd + j0 = j0 + qe

(
1 +

⌈
`p
`b

⌉)
+ qd

43

	Introduction
	Compositional Verification by Typing
	One-Time MACs
	One-time MAC functionality and security
	Wegman-Carter-Shoup (WCS) Constructions

	Pseudo-Random Functions for AEAD
	From MAC and PRF to AEAD
	From AEAD to Stream Encryption (StAE)
	TLS Content Protection: Length-Hiding Stream Encryption
	The TLS 1.3 Record Protocol
	Experimental evaluation

