iy Microsoft’ i d e a
2L — Research

Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS

Antoine Delignat-Lavaud, Karthikeyan Bhargavan,
Alfredo Pironti (Prosecco, Inria Paris)

Cédric Fournet (Microsoft Research)
Pierre-Yves Strub (IMDEA Software Institute)

User Authentication over TLS

* Applications rely on weak authentication
* Web: passwords, session cookies, single sign-on tokens
* Cookie confidentiality requires secure flag
e Cookie integrity almost never guaranteed
* Bearer tokens are vulnerable to MITM attacks

* Countermeasures bind tokens to the TLS handshake
e TLS-OBC [Dietz et al., Usenix Security 2012], Channel ID
* TLS client authentication after renegotiation
e EAP-TTLS (wireless networks, VPN...)
« SCRAM-PLUS (XMPP, mail servers...)
* Extended Protection for Windows, SAML V2.0, ...

Challenges

* Blurred line between application and transport layers
* Does TLS provide the right guarantees?

* Do applications use their TLS libraries correctly?

The API Problem

 What applications want:

socket replacement

e connect(), listen(), accept(), read(), write(), close()

* What we can prove: [miTLS project, S&P’13]

type (id:epoch) stream

type (id:epoch, h:(;id)stream, r:range) data

val data:
id:epoch{not(Auth(id))} — s:(;id) stream — r:range —
b:(;r) rbytes — c: (id,s,r) data

val repr:
id:epoch{not(Safe(id))} — s:(;id) stream — r:range —
c: (;id,s,r) data — (;r) rbytes

val split: id:epoch — s:(;id) stream —
rO:range — rl:range — d:(;id,s,Sum(r0,rl)) data —
d0:(;id,s,r0) data x d1:(;id,ExtendStream(id,s,r0,d0),r1) data

type (:c:CI) query

type Cn

type (;g:config) Cn0 = c0:Cn{InitCn(g,c0)}

type (;c:Cn) nextCn = ¢’ :Cn{NextCn(c,c’)}

type (;c:Cn) msg_i = rirange x (;CI(c).id_in, Stream_i(c), r) data
type (;c:Cn) msg_o = rirange * (;CI(c).id_out, Stream_o(c), r) data

type (;c:Cn) ioresult_i =
| Read of ¢’:(;¢) nextCn * d:(;c) msg_i
{Extend_i(c,c’,d) N (Auth(CI(c).id_in) = Write(CI(c).id_in, Bytes_i(c"))) }
| Close of TCP.Stream{Auth(CI(c).id_in) = Close(CI(c).id_in, Bytes_i(c))}
| Fatal of a:alertDescription
{Auth(CI(c).id-in) = Fatal(CI(c).id-in,a,Bytes_i(c)) }
| CertQuery of ¢’:(;c) nextCn (;¢”) query {Extend(c, c’)}
| Handshaken of ¢’:Cn {Complete(CI(c’),Cfg(c’)) A ...}

val read : c:Cn — (;c) ioresult_i

type (;c:Cn,d:(;c) msg_o) ioresult o =
| WriteComplete of ¢:(;c) nextCn {Extend_o(c,c’,d)}
| WritePartial of ¢’:(;c) nextCn * d’:(;¢’) msg_o

{ 3d0. Extend o(c,c’,d0) A Split_o(c, d, d0, c’, d’) }
| WriteError of alertDescription option
| MustRead of ¢’:Cn {...}
val write: c:Cn — d:(;c) msg_o — (;c,d) ioresult_o

APl Example: SSL read

 Return value O0: Read operation was not successful.
The reason may either be:

 aclean shutdown due to a close notify alert sent by the
peer (in which case the SSL_RECEIVED SHUTDOWN flag
in the SSL shutdown state is set)

 orthe peer simply shut down the underlying transport

OpenSSL Manual

Attack: Cookie Cutter

* Network attacker can truncate HTTPS contents by
closing underlying TCP connection

 Security is an opt-in feature of cookies
e Set-Cookie: SID=BEEFCAFE; domain=a.com; secure

* What if we truncated the secure flag?
 Header becomes syntactically invalid
* “Conservative in what you send, liberal in what you accept”

* Exploit fragmentation + plaintext injection for precise
truncation point control

Attack: Cookie Cutter

http://docs.google.com/A

\ 4

https://accounts.google.com/login?goto=http://docs.google.com/A

A

POST /login HTTP/1.1 [...] user=alice&password=123456&goto-=...

\ 4

B
Fragment 1 HTTP/1.1 302 Redirect
« Location: http://doc.google.com/A
Set-Cookie: SID=beefcafe1337; domain=.google.com
-)
|
/Fragment 2 ; secure; httpOnly; h
>< Connection: Keep-Alive)

S You are being redirected to doc.google.com ...)

Attack: Cookie Cutter

Alice Mallory Google

http://docs.google.com/A ‘ http://docs.google.com/A?XXXXX
"
https://accounts.google.com/login?goto=http://docs.google.com/A?XXXXX

\ 4

A

POST /login HTTP/1.1 [...] user=alice&password=123456&goto-=...

\ 4

B
Fragment 1 HTTP/1.1 302 Redirect
< Location: http://doc.google.com/A?XXXXX
Set-Cookie: SID=beefcafe1337; domain=.google.com
-)
|
/Fragment 2 ; secure; httpOnly; h
>< Connection: Keep-Alive)

S You are being redirected to doc.google.com ...)

Cookie Cutter: Impact and Mitigation

* Network attacker can get victim’s browser to process
malicious truncated headers

 Steal secure cookies
 Disable Strict-Transport-Security (SSL stripping)

* Fixed in Chromium (NSS library, CVE-2013-2853),
Android Browser (OpenSSL), and Safari (Secure
Transport, APPLE-SA-2014-04-22-1)

* Was the browser or the TLS library to blame?

APl Example: Renegotiation

* “If peer requests a renegotiation, it will be performed
transparently during the SSL read() operation.”

* “As at any time a re-negotiation is possible, a call to
SSL_write() can also cause read operations!”

OpenSSL Manual

Background: TLS Handshake

Client nonce, supported ciphers, extensions

Certificates, key exchange, change cipher, finished (

ifi i session
Server nonce, certificates, cipher,

verify_data)

Client

Change cipher, finished (Verify_data)

—

Server

* Key exchange produces pre-master secret (PMS)
* MS = MS-PRF(PMS, Client Nonce, Server Nonce)

11

Background: 2009 Renegotiation Attack

* Renegotiation
* A handshake is tunneled within an established TLS channel
* The newly negotiated parameters are used thereafter

* Problem
 New (inner) handshake not bound to outer tunnel
* |s the peer starting a new session or renegotiating?

* Deployed solution
* Renegotiation indication: mandatory extension
* SRI = verify_data of the latest handshake on connection
* New handshake authenticate the SRI of the previous one
* Fresh connections, resumption start with empty SRI

Attack: 3Shake Step 1

* A malicious server M can synchronize the key of a TLS
session with a client C on another server S

* RSA: M re-encrypts C’'s PMS under S’ public key
* DHE: M sends degenerate group parameters

User u Attacker
Client C Server M Server S
TLS Handshake R TLS Handshake
TLS session (sid): TLS session (sid):
anon(C') — certy anon(M) — certg
ms,cr, sr ms,cr, ST

i I i

* Neither PMS nor MS is unique to a TLS session

Attack: 3Shake Step 2

* C can resume session with M on S without any tampering.
Hash of message log (verify data) is equal on both sides

User u Attacker
Client C Server M Server S
Resume(sid) ~ Resume(sid)

Resumed (sid): Resumed (sid):
anon(C) — cert s anon(M) — certg
ms,cr’, sr’, cvd, svd ms,cr’, sr’, cvd, svd
i] *

* The tls-unique binding (first verify data of last handshake
on the current conection) is not unique after resumption!

Attack: 3Shake Step 3

e M can forward authenticated

. . User u Attacker
renegotiation from Cto S <t o S

Resume(sid) Resume(sid)

Y
)

e S associates the full session

with C’s certificate

Resumed (sid): Resumed (sid):
anon(C) — cert anon(M) — certg
ms,cr’, sr', evd, svd ms,er’, sr', evd, svd

Data

* Implementation decisions
* How does C handle the

Y L4

Renegotiate(certc) Renegotiate(certc)

Y

certificate change? e —— p—
* How does S handle data | «rtc = «ers [Lcert = certs

injected by M before Data .

renegotiation? W— — —

15

TLS Session Headache

~ 2009 Renegotiation Attack
I\
-
M — S S
v I
\
C > S

Triple Handshake Attack

~
// K
C — i B M
! 1
\ 5 |
]
I \ R —> S
M \—l Y
v 4
N\ ~ ’

16

3Shake: Impact and Mitigations

* Conditions
* Cis willing to authenticate on M with his certificate
e Cignores the server certificate change during renegotiation
* S concatenates the data before and after renegotiation

* Impact
* M can inject malicious data authenticated as C

3Shake: Mitigations

* Short-term Mitigations

* Ccan block server certificate changes
e Chomium (CVE-2013-6628)
e Safari (APPLE-SA-2014-04-22-2)
* Internet Explorer (pending)
* S may refuse to accept data before client authentication

* Long-term: fixing the standards
* We propose MS’ = MS-PRF’'(PMS, tls-session-hash)

* tls-session-hash = hash of the handshake messages that
created the session up to client key exchange

* Under consideration by the IETF (draft-bhargavan-tls-
session-hash-01)

Why 3Shake Wasn’t Discovered Earlier

* Bhargavan et al., IEEE S&P’13
Implementing TLS with Verified Cryptographic Security

» Attack falls outside the scope of their authentication
guarantees for resumption

e Giesen et al., CCS’13
On the Security of TLS Renegotiation

* Doesn’t model resumption

* Krawczyk et al., CRYPTO’13. On the Security of the TLS
Protocol: A Systematic Analysis

* Doesn’t model resumption or renegotiation

Variants and Related Attacks

Attacker Abilities API Assumptions Mitigations
Attack Broken Mechanism 12 3 4|5 6 7 8 |9 10 11| Refs
TLS Truncation HTTPS Session (Tampered) v | v \ | [13.52]
*Cookie Cutter HTTPS Session (Hijacked) v v /7 §1II-B
Session Forcing (Server) . v v v -
Session Forcing (Net) HTTPS Session (Login CSRF) / X [12, 18]
*Truncation+Session Forcing HTTPS Session (Login CSRF) v v /7 v §1II-C
TLS Renegotiation (Ray)) e v X Q.
TLS Renegotiation (Rex) TLS Client Auth (Certificate) v v v X (49, 45]
“Triple Handshake (RSA) : e v v v v §VI-A
“Triple Handshake (DHE) Dos Chenf i (Lel foin v v /7 v §V-B
MITM Tunnel Auth (Net) EAP (Certificate, Password) v X X 18]
MITM Tunnel Auth (Server) EAP (Certificate) v v v X
“"MITM Compound Auth EAP (Certificate) v v v v §VI-B
“MITM Channel Bindings SASL (SCRAM-Password) v v v v §VI-C
*MITM Channel ID Channel ID (Public-Key) v v v v &VI-D

Client connects to untrusted server

Active network attacker

Client authenticates on untrusted server

Attacker controls one subdomain on trusted server
Application accepts truncated TLS streams

6. Application sends attacker-chosen plaintext in channel

L N B

See paper for details.

7. Client accepts unknown DH groups/degenerate public keys
8. Client accepts server certificate change during renegotitation
9. HSTS: Require TLS for all actions on trusted server

10. Require renegotiation indication extension

11. Bind authentication protocol to TLS channel

20

Towards Secure TLS Applications

* It is too difficult to use current TLS APIs securely
* Certificate validation
* Session and cache management
 |dentity and session transitions
e Shutdown mode

 We must verify applications under the precise
guarantees offered by the TLS API

e Critical for features outside the channel abstraction

* SNI, ALPN, Channel ID, Channel Bindings, renegotiation,
client authentication, Keying Material Exporters...

A Verified HTTPS Client

 We introduce miHTTPS, a verified HTTPS client built
on top of the miTLS library

* miHTTPS supports cookies, TLS client authentication,
resumption and renegotiation

e Captures our attacks

* Using F7 along with Z3, we extend the refinements of
the miTLS API into HTTP-level security goals:
* Request integrity
* Response integrity
e Response tracking using fresh random cookies

Conclusions

* We found that applications fail to use the basic and
advanced features of TLS implementations securely

* We found a new logical flaw in the resumption
feature of the TLS protocol

* The TLS library is not the right unit of verification for
today’s complex application protocols

* We advocate verifying thin application protocol libraries
similar to miHTTPS

Questions?

https://www.mitls.org

