
Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS

Antoine Delignat-Lavaud, Karthikeyan Bhargavan,
Alfredo Pironti (Prosecco, Inria Paris)

Cédric Fournet (Microsoft Research)

Pierre-Yves Strub (IMDEA Software Institute)

1



User Authentication over TLS

• Applications rely on weak authentication
• Web: passwords, session cookies, single sign-on tokens

• Cookie confidentiality requires secure flag

• Cookie integrity almost never guaranteed

• Bearer tokens are vulnerable to MITM attacks

• Countermeasures bind tokens to the TLS handshake
• TLS-OBC [Dietz et al., Usenix Security 2012], Channel ID

• TLS client authentication after renegotiation

• EAP-TTLS (wireless networks, VPN…)

• SCRAM-PLUS (XMPP, mail servers…)

• Extended Protection for Windows, SAML V2.0, …
2



Challenges

• Blurred line between application and transport layers

• Does TLS provide the right guarantees?

• Do applications use their TLS libraries correctly?

3



The API Problem

4

• What applications want: socket replacement
• connect(), listen(), accept(), read(), write(), close()

• What we can prove: [miTLS project, S&P’13]



API Example: SSL_read

• Return value 0: Read operation was not successful. 
The reason may either be:
• a clean shutdown due to a close_notify alert sent by the 

peer (in which case the SSL_RECEIVED_SHUTDOWN flag 
in the SSL shutdown state is set) 

• or the peer simply shut down the underlying transport

5

OpenSSL Manual



Attack: Cookie Cutter

• Network attacker can truncate HTTPS contents by 
closing underlying TCP connection

• Security is an opt-in feature of cookies
• Set-Cookie: SID=BEEFCAFE; domain=a.com; secure

• What if we truncated the secure flag?
• Header becomes syntactically invalid

• “Conservative in what you send, liberal in what you accept”

• Exploit fragmentation + plaintext injection for precise 
truncation point control

6



Attack: Cookie Cutter

7

http://docs.google.com/A

https://accounts.google.com/login?goto=http://docs.google.com/A

POST /login HTTP/1.1 […] user=alice&password=123456&goto=…

HTTP/1.1 302 Redirect
Location: http://doc.google.com/A

Set-Cookie: SID=beefcafe1337; domain=.google.com

; secure; httpOnly;
Connection: Keep-Alive

You are being redirected to doc.google.com …

Alice Google

Fragment 2

Fragment 1



Attack: Cookie Cutter

8

http://docs.google.com/A http://docs.google.com/A?XXXXX

https://accounts.google.com/login?goto=http://docs.google.com/A?XXXXX

POST /login HTTP/1.1 […] user=alice&password=123456&goto=…

HTTP/1.1 302 Redirect
Location: http://doc.google.com/A?XXXXX

Set-Cookie: SID=beefcafe1337; domain=.google.com

; secure; httpOnly;
Connection: Keep-Alive

You are being redirected to doc.google.com …

Alice Mallory Google

Fragment 2

Fragment 1



Cookie Cutter: Impact and Mitigation

• Network attacker can get victim’s browser to process 
malicious truncated headers
• Steal secure cookies

• Disable Strict-Transport-Security (SSL stripping)

• Fixed in Chromium (NSS library, CVE-2013-2853), 
Android Browser (OpenSSL), and Safari (Secure 
Transport, APPLE-SA-2014-04-22-1)
• Was the browser or the TLS library to blame?

9



API Example: Renegotiation

• “If peer requests a renegotiation, it will be performed 
transparently during the SSL_read() operation.”

• “As at any time a re-negotiation is possible, a call to 
SSL_write() can also cause read operations!”

10

OpenSSL Manual



• Key exchange produces pre-master secret (PMS)

• MS = MS-PRF(PMS, Client Nonce, Server Nonce)

Background: TLS Handshake

11

Client Server



Background: 2009 Renegotiation Attack

• Renegotiation
• A handshake is tunneled within an established TLS channel

• The newly negotiated parameters are used thereafter

• Problem
• New (inner) handshake not bound to outer tunnel 

• Is the peer starting a new session or renegotiating? 

• Deployed solution
• Renegotiation indication: mandatory extension

• SRI = verify_data of the latest handshake on connection

• New handshake authenticate the SRI of the previous one

• Fresh connections, resumption start with empty SRI

12



Attack: 3Shake Step 1

• A malicious server M can synchronize the key of a TLS 
session with a client C on another server S
• RSA: M re-encrypts C’s PMS under S’ public key
• DHE: M sends degenerate group parameters

• Neither PMS nor MS is unique to a TLS session
13



Attack: 3Shake Step 2

• C can resume session with M on S without any tampering. 
Hash of message log (verify_data) is equal on both sides

• The tls-unique binding (first verify_data of last handshake 
on the current conection) is not unique after resumption!

14



Attack: 3Shake Step 3

15

• M can forward authenticated
renegotiation from C to S

• S associates the full session 
with C’s certificate

• Implementation decisions
• How does C handle the 

certificate change?

• How does S handle data 
injected by M before
renegotiation?



TLS Session Headache

16

M S

C S

C M

M S

2009 Renegotiation Attack

Triple Handshake Attack



3Shake: Impact and Mitigations

• Conditions
• C is willing to authenticate on M with his certificate

• C ignores the server certificate change during renegotiation

• S concatenates the data before and after renegotiation

• Impact
• M can inject malicious data authenticated as C

17



3Shake: Mitigations

• Short-term Mitigations
• C can block server certificate changes

• Chomium (CVE-2013-6628)
• Safari (APPLE-SA-2014-04-22-2)
• Internet Explorer (pending)

• S may refuse to accept data before client authentication

• Long-term: fixing the standards
• We propose MS’ = MS-PRF’(PMS, tls-session-hash)
• tls-session-hash = hash of the handshake messages that

created the session up to client key exchange
• Under consideration by the IETF (draft-bhargavan-tls-

session-hash-01)

18



Why 3Shake Wasn’t Discovered Earlier

• Bhargavan et al., IEEE S&P’13
Implementing TLS with Verified Cryptographic Security
• Attack falls outside the scope of their authentication 

guarantees for resumption

• Giesen et al., CCS’13
On the Security of TLS Renegotiation
• Doesn’t model resumption

• Krawczyk et al., CRYPTO’13. On the Security of the TLS 
Protocol: A Systematic Analysis
• Doesn’t model resumption or renegotiation

19



Variants and Related Attacks

20

See paper for details.



Towards Secure TLS Applications

• It is too difficult to use current TLS APIs securely
• Certificate validation

• Session and cache management

• Identity and session transitions

• Shutdown mode

• We must verify applications under the precise 
guarantees offered by the TLS API

• Critical for features outside the channel abstraction
• SNI, ALPN, Channel ID, Channel Bindings, renegotiation, 

client authentication, Keying Material Exporters…
21



A Verified HTTPS Client

• We introduce miHTTPS, a verified HTTPS client built 
on top of the miTLS library

• miHTTPS supports cookies, TLS client authentication, 
resumption and renegotiation
• Captures our attacks

• Using F7 along with Z3, we extend the refinements of 
the miTLS API into HTTP-level security goals:
• Request integrity

• Response integrity

• Response tracking using fresh random cookies
22



Conclusions

• We found that applications fail to use the basic and 
advanced features of TLS implementations securely

• We found a new logical flaw in the resumption 
feature of the TLS protocol

• The TLS library is not the right unit of verification for 
today’s complex application protocols
• We advocate verifying thin application protocol libraries 

similar to miHTTPS
23



Questions?

24

https://www.mitls.org


