
Web-based Attacks on Host-Proof Encrypted Storage

Karthikeyan Bhargavan
INRIA

Antoine Delignat-Lavaud
ENS Cachan

Abstract
Cloud-based storage services, such as Wuala, and pass-
word managers, such as LastPass, are examples of so-
called host-proof web applications that aim to protect
users from attacks on the servers that host their data.
To this end, user data is encrypted on the client and the
server is used only as a backup data store. Authorized
users may access their data through client-side software,
but for ease of use, many commercial applications also
offer browser-based interfaces that enable features such
as remote access, form-filling, and secure sharing.

We describe a series of web-based attacks on popu-
lar host-proof applications that completely circumvent
their cryptographic protections. Our attacks exploit stan-
dard web application vulnerabilities to expose flaws in
the encryption mechanisms, authorization policies, and
key management implemented by these applications.
Our analysis suggests that host-proofing by itself is not
enough to protect users from web attackers, who will
simply shift their focus to flaws in client-side interfaces.

1 Host-Proof Web Applications

The remarkable increase in website attacks in recent
years and the consequent loss of sensitive user data has
motivated a security-focused redesign of web applica-
tions where data is now routinely stored in encrypted
form on web servers and only decrypted when needed.
This architecture protects users from malicious hackers
who may steal a database from the server but will not
be able to decrypt it. However, it does not prevent data
theft by disgruntled employees, who may have access to
the decryption keys. Moreover, since the server applica-
tion has access to decrypted data and is itself accessible
over the web, any vulnerability in its code risks leaking
user data to a web-based attacker through standard at-
tacks like cross-site request forgery (CSRF).

Server-side encryption may be adequate for casual
websites, but users of cloud-based storage and privacy-

Figure 1: Host-proof web application architecture

sensitive applications such as password managers de-
mand stronger security guarantees. For example, when
the storage service Dropbox [5] revealed that some of
its employees could read user files, it was widely criti-
cized for violating user privacy [15]. Conversely, when
the password manager LastPass [7] announced that its
servers may have been compromised [16], public reac-
tion was mitigated because of the host-proof [6] design
that LastPass implements against this class of attacks.

A host-proof web application follows the architecture
depicted in Figure 1. Personal data is encrypted on the
client using a key or passphrase known by the user, while
the web server only acts as an encrypted data store. The
full functionality of the application is implemented in the
client-side app, which performs all encryptions and de-
cryptions, backs up the database to the server and, only
when the user authorizes it, shares decrypted data with
other users or websites. Since the server never sees un-
encrypted data (nor any decryption key, ideally), even if
an attacker steals the database from the server, he cannot
recover the plaintext without substantial computational
effort to brute-force through every user’s decryption key.

1

This design is sometimes called cryptographic cloud
storage, and may use cryptographic mechanisms that
enable some operations on encrypted data (such as
search) [28]. The design is also sometimes misleadingly
called zero-knowledge [3, 11]. We use the more neutral
term host-proof to simply mean that the security of the
application does not depend on trusting the server.

We consider two classes of host-proof web applica-
tions: cloud-based storage and password managers.

• Storage services, such as Wuala [12] and Spi-
derOak [11], offer a remote encrypted backup folder
synchronized across all of the user’s devices. The
user may explicitly share specific sub-folders or
files with other users, groups, or through a web link.

• Password managers, such as LastPass [7] and
1Password [1], offer to store users’ confidential
data, such as login credentials to different websites,
or credit card numbers. When the user browses to a
website, the password manager offers to automati-
cally fill in the login form with a username and pass-
word retrieved from the encrypted database. The
password database is backed up on a server and syn-
chronized across the user’s devices.

These applications differ from each other in their pre-
cise use of cryptography and in their choice of web in-
terfaces. Tables 1 and 2 summarize the main features of
a series of host-proof applications. In addition to those
mentioned above, these tables include the cloud stor-
age applications BoxCryptor [2] and CloudFogger [4]
that add client-side encryption to non host-proof cloud
services such as Dropbox. They also include the pass-
word managers RoboForm [10], PassPack [9], and Clip-
perz [3]. For each application, Table 1 notes the crypto-
graphic algorithms and mechanisms used, while Table 2
summarizes the web interfaces offered.

Despite differences in their design and implementa-
tion, the common security goals of host-proof encrypted
storage applications can be summarized as follows:

• confidentiality: unshared user data must be kept se-
cret from all web-based adversaries (including the
server application itself);

• integrity: encrypted user data cannot be tampered
with without it being detected by the client;

• authorized sharing: data shared by the user may be
read only by explicitly authorized principals.

In the rest of this paper, we describe five exemplary
attacks on commercial host-proof applications that break
these security goals by exploiting flaws in both their
cryptographic design and their web interfaces.

2 Metadata Tampering Attacks on
Client-side Encryption

Client-side encryption typically relies on the user ei-
ther knowing an encryption key or knowing a secret
passphrase from which a key may be derived. All the
applications analyzed in this paper support the PBKDF2
password-based key derivation function [13] that takes a
passphrase p, salt s, and iteration count c, and generates
an encryption key k (of a given length):

k = KDF(p,s,c)

The salt ensures that different keys derived from the
same passphrase are independent and a high iteration
count protects against brute-force attacks by stretching
the low-entropy password [29]. The choice of s and c
varies across different applications; for example LastPass
uses a username as s and c = 1000, whereas SpiderOak
uses a random s and c = 16384. When c is too low or the
passphrase p is used for other (cheaper) computations,
the security of the application can be compromised [25].
The attacks in this paper do not rely on brute-force at-
tacks against passwords. In the rest of this paper, we
assume that all passphrases and keys derived from them
are strong and unguessable.

Given an encryption key k and data d, each application
uses an encryption algorithm to generate a ciphertext e:

e = ENC(k,d)

The applications in this paper all support AES encryp-
tion, either with 128-bit or 256-bit keys, and a variety
of encryption modes (CTR, CBC, CFB). Some applica-
tions also support other algorithms, such as Blowfish,
Twofish, 3DES, and RC6. In this paper, we assume that
all these encryption schemes are correctly implemented
and used. Instead, we focus on what is encrypted and
how encrypted data is handled.

On storage services, such as SpiderOak and Wuala,
each file is individually encrypted using AES and then in-
tegrity protected using HMAC (with another key derived
from the passphrase)

h = HMAC(k′,ENC(k,d))

To avoid storing multiple copies of the same file, some
services, including Wuala, perform the encryption in two
steps: first the file is encrypted using the hash of its con-
tents as key, then the hash is encrypted with a passphrase-
derived key.

e = ENC(HASH(d),d),ENC(k,HASH(d))

The first encryption doesn’t depend on the user, enabling
global deduplication: the server can identify and con-
solidate multiple copies of a file. Although the contents

2

Name Data Format Key Derivation Encryption Encrypted Data Ciphertext Integrity Metadata Protection
Wuala Blobs PBKDF2-SHA256 AES, RSA Files, Folders HMAC !

SpiderOak Files PBKDF2-SHA256 AES, RSA Files HMAC !

BoxCryptor Files PBKDF2 AES Files, Filenames None #

CloudFogger Files PBKDF2 AES, RSA Files None #

LastPass XML PBKDF2-SHA256 AES, RSA Fields None #

PassPack JSON SHA256 AES Records None !

RoboForm PassCard PBKDF2 AES, DES Records None #

1Password Keychain PBKDF2-SHA1 AES Records None #

Clipperz JSON SHA256 AES Records SHA-256 !

Table 1: Example host-proof web applications and their cryptographic features

Name Backup Location Remote Access Bookmarklet Custom Client Local Page Browser Extension
Wuala Application Server Java Web Applet # ! ! #

SpiderOak Application Server JavaScript Website # ! # #

BoxCryptor Third-party (Dropbox) None # ! # #

CloudFogger Third-party (Dropbox) None ! ! # #

LastPass Application Server JavaScript Website ! # # !

PassPack Application Server JavaScript Website ! # # #

RoboForm Application Server None ! ! # !

1Password Third-party (Dropbox) None # ! # !

Clipperz Application Server JavaScript Website ! # ! #

Table 2: Example host-proof web applications and their web interfaces

of each file is encrypted, metadata, such as the directory
structure and filenames, may be left unecrypted to enable
directory browsing.

Some password managers, such as LastPass, sepa-
rately encrypt each data item: username, password,
credit card number, etc. but leave the database structure
unencrypted. Others, such as RoboForm and 1Password,
encrypt each record as a separate file. Still others encrypt
the full database atomically. In most of these cases, there
is no integrity protection for the ciphertext. Moreover,
some metadata, such as website URLs, may be left un-
encrypted to enable search and lookup.

When metadata is left unprotected and is not strongly
linked to the encrypted user data using some integrity
mechanism (such as HMAC), it becomes vulnerable to
tampering attacks. We illustrate two such attacks.

RoboForm Passcard Tampering The RoboForm
password manager stores each website login in a differ-
ent file, called a passcard. For example, a Google user-
name and password would be stored in a passcard Google
.rfp of the form:

URL3:Encode(‘https://accounts.google.com’)

+PROTECTED-2+

<ENC(k,(username,password))>

That is, it contains the plaintext URL (encoded in
ASCII) and then an encrypted record containing all the
login data for the URL. By opening this passcard in
RoboForm, the user may directly login to Google using

the decrypted login data. Notably, nothing protects the
integrity of the URL. So, if an adversary can modify the
URL to bad.com, RoboForm will still decrypt and verify
the passcard and leak the Google username and password
to the attacken when the user browses bad.com.

A web-based attacker can exploit this vulnerability in
combination with RoboForm’s passcard sharing feature.
RoboForm users may send passcards over email to their
friends. So if an adversary could intercept such a pass-
card and replace the URL with bad.com, the website can
then steal the secret passcard data. Similar attacks ap-
ply when synchronizing RoboForm with a compromised
backup server or when malware on the client has access
to the RoboForm data folder.

1Password Keychain Tampering 1Password uses a
different encryption format, but similarly fails to protect
the integrity of the website URL. For example, a Google
record in 1Password’s Keychain format is of the form:

{"uuid":"37F3E65BA83C4AB58D8D47ED26BD330B",

"title":"Google",

"location":"https://accounts.google.com/",

"encrypted":<ENC(k,(username,password))>}

Hence, an attacker who has write access to the key-
chain may similarly modify the location field to bad.

com and obtain the user’s Google password. Concretely,
since 1Password keychains are typically shared over
Dropbox, any attacker who has (temporary) access one
of the user’s Dropbox-connected devices will be able to

3

tamper with the keychain and cause it to leak secret data
to malicious websites.

Similar vulnerabilities due to lack of integrity protec-
tion on filenames in BoxCryptor and CloudFogger en-
able an attacker to modify filenames of encrypted files,
say from a.pdf to a.exe.

Towards Authenticated Encryption It is gener-
ally accepted among the cryptographic community
that “encryption without integrity-checking is all but
useless”[26]. A simple fix to tampering attacks would be
to use an MAC to protect the integrity of both the meta-
data and the encrypted items, as in Wuala and SpiderOak.
Alternately, the metadata could also be encrypted and the
integrity of the plaintext could be protected by a crypto-
graphic hash (before encryption).

More generally, many host-proof applications appear
to use encryption algorithms as if they guaranteed cipher-
text integrity. This assumption is false for many modes of
AES and especially for hybrid encryption using a combi-
nation of RSA and AES. Instead, each password manager
should seek to implement a scheme that provides authen-
ticated encryption with associated data [30], where the
associated data includes unencrypted metadata.

Vulnerability Response We notified both 1Password
and RoboForm about these attacks on April 3, 2012.

The 1Password team responded within days with de-
tails of their new keychain format for their next version
(4.0); this format includes integrity protections which
potentially addresses our concerns, but a more detailed
analysis of the new format remains to be done.

The RoboForm team proved more resistant to chang-
ing their design. They questioned our threat model (“if a
malware can modify passcards, it can be just a keylogger
instead”), but our attack works even on passcards trans-
ported over insecure email. Despite our demo, they re-
fused to believe that we can tamper with passcards (“pro-
duce as many passcards as you want and then modify
them. they all should be rejected”). We are continuing
our discussions with RoboForm but do not anticipate any
fixes in the near future.

Both vulnerabilities were publicly disclosed [19, 20].

3 Cross-Site Request Forgery
on Remote Web Access

Some host-proof applications such as LastPass and Spi-
derOak offer fully-featured JavaScript interfaces to its
roaming users. A user may login to the website with her
passphrase and access her data. However, the passphrase
itself should never be sent to the server; instead the
JavaScript client should derive decryption keys within

the browser. Ideally, all decryptions would also be run
within the user’s browser, but for efficiency, some de-
cryptions may be executed server-side, with the promise
that decryption keys are destroyed on logout.

SpiderOak JSONP CSRF Attack The SpiderOak
website uses AJAX with JSONP to retrieve data
about the user’s devices, directory contents and share
rooms. So, when a user is logged in, a GET request
to /storage/<u32>/?callback=f on https://spideroak.com

where <u32> is the base32-encoded username returns:

f({"stats":

{"firstname": "Legit",

"lastname": "User", "devices": 3, ...

"devices": [["homepc", "homepc/"],

["laptop", "laptop/"],

["mobile","mobile/"]]}})

Hence, by accessing the JSON for each device (e.g.
/storage/homepc/), the JavaScript client retrieves and dis-
plays the entire directory structure for the user.

It is well known that JSONP web applications are sub-
ject to Cross-Site Request Forgery if they do not enforce
an allowed origin policy [24]. SpiderOak enforces no
such policy, hence if a user browsed to a malicious web-
site while logged into SpiderOak, that website only needs
to know or guess the user’s SpiderOak username to re-
trieve JSON records for her full directory structure.

More worryingly, if the user has shared a private folder
with her friends, accessing the JSON at /storage/<u32>

/shares yields an array of shared “rooms” that includes
access keys:

{"share_rooms" :
[{"url" : "/browse/share/<id>/<key>" ,

"room_key" : "<key>" ,
"room_description" : "" ,
"room_name":<room >}] ,

"share_id" : "<id>" ,
"share_id_b32" : "<u32>"}

So, the malicious website may now at leisure access the
shared folders at https://spideroak.com/browse/share/

<id>/<key> to steal all of a user’s shared data.

Key Management for Shared Data Our specific at-
tack can be prevented by simply adding standard CSRF
protections to all the JSONP URLs offered by Spi-
derOak. However, a more general design flaw is the
management of encryption keys for shared data. When
a folder is shared by a user, it is decrypted and stored
in plaintext on the server, protected only by a pass-
word that is also stored in plaintext on the server. This
breaks the host-proof design completely since flaws in
the SpiderOak website may now expose the contents
of all shared folders (as indeed we found). A better
design would be to use encrypted shared folders as in

4

Wuala [27], where decryption keys are temporarily pro-
vided to the website but not stored permanently.

Vulnerability Response We notified the SpiderOak
team about the attack on May 21, 2012; they acknowl-
edged the issue and disabled JSONP within one hour.
However, no change was made to the management of
share room keys, and no additional protections against
CSRF attacks, such as Referer or token based checks,
have been put in place. We fear that shared data on Spi-
derOak remains vulnerable to other website attacks; no-
tably, many of the problems reported on the SpiderOak
Security Response page relate to cross-site scripting.

4 Stealing Data from Client-side Websites

Wuala is a Java application that may be run directly as a
desktop client or as a Java applet from the Wuala website.
It maintains an encrypted directory tree where each file is
encrypted with a different key and the hierarchy of keys
is maintained by a sophisticated key management struc-
ture [27]. When started, Wuala asks for a username and
password, uses them to derive a master key which is then
used to decrypt the directory tree. On Windows systems,
Wuala creates the following local directory structure:

%userprofile%/AppData
Local

Wuala
Data (local cache)

Roaming
Wuala

defaultUser (master key file)

The defaultUser file contains the master key for the cur-
rent user. The Data folder contains the encrypted direc-
tory tree along with plaintext data for files that have been
recently uploaded or downloaded from the server.
Wuala also runs a lightweight HTTP server on localhost

at port 33333. This HTTP server is primarily meant
to provide various status information, such as whether
Wuala is running, whether backup is in progress, log
error messages, etc. It may also be used to open the
Wuala client at an given path from the browser. The user
may enable other users on the LAN to access this HTTP
server to monitor its status. The HTTP server cannot be
disabled but is considered a mostly harmless feature.

Database recovery attack on Wuala We discovered
a bug on the Wuala HTTP server, where files requested
under the /js/ path resolve first to the contents of the
main Wuala JAR package (which has some JavaScript
files) and then, if the file was not found, to the content of
Wuala’s starting directory.

If Wuala was launched as an applet, its starting directory
will be Roaming in the above tree, meaning that brows-
ing to http://localhost:33333/js/defaultUser will return
the master key of the current active user. Using this mas-
ter key file anyone can masquerade as the user and obtain
the full directory tree from Wuala.
If Wuala was started from as a desktop client, its stating
directory will be Local instead, allowing access to the
local copy of the database, including some plaintext files.
These flaws can be directly exploited by an attacker on
the same LAN (if LAN access to the HTTP server is en-
abled; it isn’t by default), or by any malware on the same
desktop (even if the malware does not have permission
to read or write to disk or to access the Internet). The
attacker obtains the full database if Wuala was started as
an applet, and some decrypted files otherwise.

Protecting Keys from Web Interfaces Our attack re-
lies on a bug in the HTTP server, it simply should not
allow access to arbitrary files under the /js/ path.
More generally, the attack reveals a design weakness
that the Wuala master key is available in plaintext when
Wuala is running and is stored in plaintext on disk if the
user asks Wuala to remember his password. This file is
extremely sensitive since obtaining the file is adequate to
reconstruct and decrypt a complete copy of the user’s di-
rectory tree (on any machine). The software architecture
of Wuala makes the file available to all parts of the appli-
cation including the HTTP server. We advocate a more
modular architecture that isolates sensitive key material
and cryptographic operations in separate processes from
(potentially buggy) web interfaces.

Vulnerability Response We notified the Wuala team
about the vulnerability on May 21, 2012. They re-
sponded immediately and released an update (version
399) within 24 hours that disabled file access from the lo-
cal web server. No other change was made to the HTTP
server or master key cache file following our report. The
vulnerability has been publicly disclosed [17].

5 Phishing Attacks on Browser Extensions

Password managers typically offer browser extensions
that can be used to fill forms automatically on known
websites. These extensions are written in JavaScript and
either implement cryptography in JavaScript (e.g. Last-
Pass) or call out to an external desktop application (e.g.
1Password and RoboForm).
When a user visits a website, say gmail.com with a pass-
word manager’s browser extension installed, the exten-
sion examines the URL of the page to decide whether or
not to automatically fill in the login form (using data re-

5

trieved and decrypted from the database). However, the
code for parsing the URL is often flawed and does not
account for maliciously crafted URLs.

1Password Phishing Attack For example, the URL
parsing code in the 1Password extension (version 3.9.2)
attempts to extract the top-level domain name from the
URL of the current page:

var href = getBrowser().contentWindow.location.href

+ "/";

var domain = href.replace(/^http[s]*:\/\/(.*?)\/.*$/i,

"$1");

var middle = domain.replace(/^(www.)*(.*)/i, "$2");

return middle.substring(0,1).toUpperCase() +

middle.substring(1,middle.length);

So given a URL http://www.google.com, this code re-
turns the string Google.com. However, this code does
not correctly account for URLs of the form http://user:

password@website. So, suppose a malicious website redi-
rected a user to the url http://www.google.com:xxx@bad.

com. The browser would show a page from http://bad.

com (after trying to login as the “user” Google.com), but
the 1Password browser extension would incorrectly as-
sume that it was on the domain Google.com and release the
user’s Google username and password. This amounts to
a phishing attack on the browser extension, which is par-
ticularly serious since one of the advertised features of
password managers like 1Password is that they attempts
to protect naive users from password phishing.
Similar attacks can be found on other password man-
agers, such as RoboForm’s Chrome extension, that use
URL parsing code that is not defensive enough.

URL Parsing Parsing URLs correctly with regular ex-
pressions is a surprisingly difficult task, despite URLs
having a well understood syntax [14], and leading web-
sites often get it wrong [31]. Perhaps the most widely
used URL parsing library for JavaScript is parseUri [8]
which uses the following regular expression (in “strict”
standard-compliance mode):

s t r i c t : / ˆ (? : ([ˆ : \ / ? #] +) :) ? (? : \ / \ / ((? : (([ˆ :@]∗)
(? : : ([ˆ :@]∗)) ?) ?@) ? ([ˆ : \ / ? #] ∗) (? : : (\ d ∗)) ?)
) ? ((((? : [ˆ ? # \ /] ∗ \ /) ∗) ([ˆ ? #] ∗)) (? : \ ? ([ˆ #] ∗)
) ? (? : # (. ∗)) ?) /

This regular expression is also incomplete. For example,
given the URL http://bad.com/#@accounts.google.com, it
yields a domain accounts.google.com whereas the correct
interpretation is bad.com.

Domain-based Authorization Password managers
authorize websites based on their domain name. The
basic flaw that enables our phishing attacks is that the
interpretation of the domain of the URL by the browser

extension is inconsistent with the interpretation of the
browser. In the cases shown above, the extension was
wrong and the browser was right. But even if the
extension were right and the browser were wrong, a
secret password may be leaked. An easy fix that prevents
our attack is for the extension to directly use the parsed
window.location object given by the browser. A
different fix is to use a careful regular expression parser
that mimics the browser.
A more general design question is whether domain-based
authorization is appropriate for website login. On host-
ing websites such as WordPress and Google Sites, hun-
dreds of different websites may share the same domain
name, causing domain-based password managers to be
very error-prone. Moreover, users may wish to only
release their passwords over HTTPS, but domains do
not include protocol information. So for example, if a
user asked LastPass to remember her password to https:

//facebook.com, and later she was redirected to the HTTP
login form on http://facebook.com, LastPass will happily
fill in her username and password, revealing it to eaves-
droppers on the network. We advocate that password
managers implement site-specific authorization policies
that include full origins (scheme, host, port) and enable
users to choose their desired level of security.

Vulnerability Response We notified 1Password about
the phishing vulnerability on April 3, 2012. The 1Pass-
word team responded immediately and released a new
beta version of their browser extensions on April 5, 2012
(build 39304) that implements a new, more careful, URL
parsing function. This function fixes the specific attack
that we found but a full verification of their new URL
parsing code and its consistency with different browsers
remains an open question. The 1Password vulnerability
has been publicly disclosed [18].

6 Rootkit attacks on bookmarklets

Bookmarklets are bookmarks that contain a fragment of
Javascript code. When clicked, this code is injected
into the current active page, a feature commonly used
by password managers to fill login forms on the page
using the user’s password database. Bookmarklets can
be considered lightweight substitutes for browser exten-
sions and are particularly suited for mobile and roam-
ing users. Unlike extensions, bookmarklets are evalu-
ated inside the Javascript scope of the page they are be-
ing injected into, making them vulnerable to a variety
of threats, collectively called rootkit attacks [21] that are
very hard to protect against. Of particular concern are
bookmarklets that handle sensitive data like passwords:
they must ensure that they do not inadvertently leak the

6

data meant for one site to another. The countermeasure
proposed in [21] addresses exactly this problem by veri-
fying the origin of the website and has been adopted by
a number of password managers, including LastPass and
PassPack. However, they are still vulnerable to attack.

LastPass master key theft The LastPass Login book-
marklet loads code from lastpass.com that defines vari-
ous libraries and then runs the following (stripped down)
function:

function _LP_START() {

_LP = new _LP_CONTAINER();

var d = {<encrypted form data>};

_LP.setVars(d, ’<user>’,

’<encrypted_key>’, _LASTPASS_RAND, ...);

_LP.bmMulti(null, null);

}

This code retrieves the encrypted username and en-
crypted password for the current website, it downloads a
decryption key (encrypted with the secret key associated
with the bookmarklet), and uses the decryption key to
decrypt the username and password before filling in the
login form. Even though the decryption key is itself en-
crypted, it is enough to know <user> and _LASTPASS_RAND

to decrypt it. Hence, a malicious page can detect when
the _LP_CONTAINER object becomes defined (i.e. when the
user has clicked the LastPass bookmark), redefine this
object and call _LP_START again to decrypt and leak the
key, username, and password.
Since the username and password are meant for the cur-
rent (malicious) page, this does not seem like a serious
attack, until we note that the decryption key obtained
by this attack is the permanent master key that is used
to encrypt all the usernames and passwords in the user’s
LastPass database. Hence, the bookmarklet leaks the de-
cryption key for the full database to a malicious website.
A similar attack applies to the PassPack bookmarklet: a
malicious website can steal a temporary encryption key
that enables it to add a new record into the user’s pass-
word database for any URL.

Per-record Key Derivation To protect host-proof ap-
plications against bookmarklet attacks, it is not enough
to strongly authenticate the page that loads the content
script. We also need to verify that the website is autho-
rized to read any secret included in the content script. For
example, our attacks would not be so serious if the keys
revealed by the bookmarklet were specific to the web-
site. Instead, they reveal a design flaw in the ways keys
are used in LastPass; LastPass derives a master key from
a username and a master password, without using any
seed. This key remains constant for a long time (until
the master password is changed). Moreover, it is used to
individually encrypt each username and password field,

and also used to re-encrypt the full database. To correctly
implement data sharing with different websites, we advo-
cate that different keys be generated for different records,
by using per-record salts, or by including the URL (or its
domain name) into the key derivation process.

Vulnerability Response We notified LastPass about
the vulnerability on May 21, 2012. The LastPass team
acknowledged the risk of leaking the master decryption
key to malicious websites and changed their bookmarklet
design within 24 hours. Decryption is now performed
inside an iframe loaded from the https://lastpass.com

origin, preventing the host page from stealing the key.
However, they did not modify the overall design; hence,
LastPass still uses a single master key for all encryptions.

7 Conclusions

The host-proof application design pattern provides one
level of isolation between sensitive user data and web-
site attackers, but this is not enough. Moving cryptog-
raphy to the client means that special attention should
be paid to enforcing strong isolation between code that
is relevant to the user interface and code that performs
security-sensitive cryptographic operations.
Current commercial host-proof client applications have
critical flaws in the way they integrate browser-based in-
terfaces with cryptographic code. We have presented a
series of practical attacks that exploit these flaws. We
have built demonstrations of these attacks and helped
various vendors fix their software.
From the viewpoint of web application security, our at-
tacks are not new; what is novel is their interaction with
cryptographic mechanisms, and the way they reveal se-
curity design flaws. We found these attacks by a careful
but manual study of selected host-proof applications over
a few weeks. It is worrying that we were able to find at-
tacks on most applications we looked at without the aid
of any sophisticated tools.
To find more subtle attacks or to verify that an applica-
tion is free from attack will require automated tools that
can account for both web-specific threats and a precise
model of cryptography but still scale up to realistic web
applications. As ongoing and future work, our goal is to
build such analysis tools based on sound formal founda-
tions [22, 23] and apply them, for example, to the verifi-
cation of the host-proof web applications studied here.

Acknowledgments Bhargavan is supported by the
ERC Starting Grant CRYSP. This work was done during
Delignat-Lavaud’s internship at INRIA.

7

References

[1] 1Password. https://agilebits.com.

[2] BoxCryptor. http://boxcryptor.com.

[3] Clipperz. http://clipperz.com.

[4] CloudFogger. http://cloudfogger.com.

[5] Dropbox. http://dropbox.com.

[6] Host-proof hosting. http://ajaxpatterns.org/

Host-Proof_Hosting.

[7] LastPass. http://lastpass.com.

[8] Parseuri 1.2: Split urls in javascript. http://

stevenlevithan.com/demo/parseuri/js/.

[9] PassPack. http://passpack.com.

[10] RoboForm. http://www.roboform.com.

[11] SpiderOak. http://spideroak.com.

[12] Wuala. http://wuala.com.

[13] PKCS #5: Password-Based Cryptography Specifi-
cation, Version 2.0. IETF, 2000.

[14] RFC3986: Uniform Resource Identifier (URI):
Generic Syntax. IETF, 2005.

[15] Keys to the cloud castle. Economist, May 18th
2011. http://www.economist.com/blogs/babbage/

2011/05/internet_security.

[16] LastPass Security Notification, May 4th
2011. http://blog.lastpass.com/2011/05/

lastpass-security-notification.html.

[17] CVE-2012-3874: Wuala Status Page Leaks Plain-
text Files, July 7 2012.

[18] CVE-2012-3879: Phishing attack on 1Password
Browser Extensions, July 8 2012.

[19] CVE-2012-3882: RoboForm ”Receive Passcard by
E-mail” Feature Accepts Tampered Metadata, July
8 2012.

[20] CVE-2012-3883: 1Password Restore Feature Ac-
cepts Tampered Metadata, July 8 2012.

[21] Ben Adida, Adam Barth, and Collin Jackson.
Rootkits for JavaScript environments. In Proceed-
ings of the 3rd USENIX conference on Offensive
technologies, WOOT’09, 2009.

[22] D. Akhawe, A. Barth, P.E. Lam, J. Mitchell, and
D. Song. Towards a formal foundation of web se-
curity. In 2010 23rd IEEE Computer Security Foun-
dations Symposium, pages 290–304. IEEE, 2010.

[23] Chetan Bansal, Karthikeyan Bhargavan, and Ser-
gio Maffeis. Discovering concrete attacks on
website authorization by formal analysis. In
25th IEEE Computer Security Foundations Sympo-
sium (CSF’12), Cambridge, MA, USA, June 2012.
IEEE. To appear.

[24] Adam Barth, Collin Jackson, and John C. Mitchell.
Robust defenses for cross-site request forgery. In
Peng Ning, Paul F. Syverson, and Somesh Jha, ed-
itors, ACM Conference on Computer and Commu-
nications Security, pages 75–88. ACM, 2008.

[25] Andrey Belenko and Dmitry Sklyarov. “Secure
Password Managers” and “Military-Grade Encryp-
tion” on Smartphones: Oh, Really? Techni-
cal report, Elcomsoft Co. Ltd., 2012. http://www.

elcomsoft.com/WP/BH-EU-2012-WP.pdf.

[26] Steven M. Bellovin. Cryptography and the inter-
net. In Advances in Cryptology: Proceedings of
CRYPTO ’98, August 1998.

[27] Dominik Grolimund, Luzius Meisser, Stefan
Schmid, and Rogert Wattenhofer. Cryptree: A
folder tree structure for cryptographic file systems.
In Proceedings of the 25th IEEE Symposium on Re-
liable Distributed Systems, SRDS ’06, pages 189–
198, 2006.

[28] Seny Kamara and Kristin Lauter. Cryptographic
cloud storage. In Proceedings of the 14th inter-
national conference on Financial cryptograpy and
data security, FC’10, pages 136–149, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[29] John Kelsey, Bruce Schneier, Chris Hall, and David
Wagner. Secure applications of low-entropy keys.
In Proceedings of the First International Workshop
on Information Security, ISW ’97, pages 121–134,
London, UK, UK, 1998. Springer-Verlag.

[30] Phillip Rogaway. Authenticated-encryption with
associated-data. In Proceedings of the 9th ACM
conference on Computer and communications se-
curity, CCS ’02, pages 98–107, New York, NY,
USA, 2002. ACM.

[31] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and
Collin Jackson. Busting frame busting: a study
of clickjacking vulnerabilities at popular sites. In
in IEEE Oakland Web 2.0 Security and Privacy
(W2SP 2010), 2010.

8

