
Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Security Types for Web Applications

Antoine Delignat-Lavaud

Under the supervision of S. Maffeis and K. Bhargavan
PROSECCO, INRIA Paris-Rocquencourt

September 3, 2012

1 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Introduction: Our Goals

Security of Web Applications
I Application logic shared between web server

and browser client.
I Complex interaction over HTTP between at

least 2 main principals, often more.
I Other interactions between client / server

and third parties.
I Security goals: confidentiality and integrity of

communication, authentication, data access
control, sharing...

I Use of cryptography to achieve these goals.

2 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Introduction: Our Goals

Security of Web Applications
I Application logic shared between web server

and browser client.
I Complex interaction over HTTP between at

least 2 main principals, often more.
I Other interactions between client / server

and third parties.
I Security goals: confidentiality and integrity of

communication, authentication, data access
control, sharing...

I Use of cryptography to achieve these goals.

2 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Introduction: Our Goals

Security of Web Applications
I Application logic shared between web server

and browser client.
I Complex interaction over HTTP between at

least 2 main principals, often more.
I Other interactions between client / server

and third parties.
I Security goals: confidentiality and integrity of

communication, authentication, data access
control, sharing...

I Use of cryptography to achieve these goals.

2 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Introduction: Our Goals

Security of Web Applications
I Application logic shared between web server

and browser client.
I Complex interaction over HTTP between at

least 2 main principals, often more.
I Other interactions between client / server

and third parties.
I Security goals: confidentiality and integrity of

communication, authentication, data access
control, sharing...

I Use of cryptography to achieve these goals.

2 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Introduction: Our Goals

Security of Web Applications
I Application logic shared between web server

and browser client.
I Complex interaction over HTTP between at

least 2 main principals, often more.
I Other interactions between client / server

and third parties.
I Security goals: confidentiality and integrity of

communication, authentication, data access
control, sharing...

I Use of cryptography to achieve these goals.

2 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Web application overview

Server Browser

PHP JavaScript

HTML markup

JavaScript

CSS, images

AJAX

Web services
SSO...

Mashups
Like button...

3 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Web application overview

Server Browser

PHP JavaScript

HTML markup

JavaScript

CSS, images

AJAX

Web services
SSO...

Mashups
Like button...

3 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Web application overview

Server Browser

PHP JavaScript

HTML markup

JavaScript

CSS, images

AJAX

Web services
SSO...

Mashups
Like button...

3 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Browser security

4 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Our contribution
I We focus our attention on the client-side

interactions.
I We conducted a review on the security of

host-proof web applications and found a
variety of attack vectors.

I We investigated the problem of loading
trusted JavaScript code into an untrusted
environment.

I We propose a subset of JavaScript we belive
is safe to use in such environments.

I We implemented a type system able to
check if a given script belongs to that subset.

5 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Our contribution
I We focus our attention on the client-side

interactions.
I We conducted a review on the security of

host-proof web applications and found a
variety of attack vectors.

I We investigated the problem of loading
trusted JavaScript code into an untrusted
environment.

I We propose a subset of JavaScript we belive
is safe to use in such environments.

I We implemented a type system able to
check if a given script belongs to that subset.

5 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Our contribution
I We focus our attention on the client-side

interactions.
I We conducted a review on the security of

host-proof web applications and found a
variety of attack vectors.

I We investigated the problem of loading
trusted JavaScript code into an untrusted
environment.

I We propose a subset of JavaScript we belive
is safe to use in such environments.

I We implemented a type system able to
check if a given script belongs to that subset.

5 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Our contribution
I We focus our attention on the client-side

interactions.
I We conducted a review on the security of

host-proof web applications and found a
variety of attack vectors.

I We investigated the problem of loading
trusted JavaScript code into an untrusted
environment.

I We propose a subset of JavaScript we belive
is safe to use in such environments.

I We implemented a type system able to
check if a given script belongs to that subset.

5 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Our contribution
I We focus our attention on the client-side

interactions.
I We conducted a review on the security of

host-proof web applications and found a
variety of attack vectors.

I We investigated the problem of loading
trusted JavaScript code into an untrusted
environment.

I We propose a subset of JavaScript we belive
is safe to use in such environments.

I We implemented a type system able to
check if a given script belongs to that subset.

5 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Host-Proof Application Design

User

Content Server Application Client

Sensitive dataHacker X

6 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Host-Proof Application Design

User

Content Server Application Client

Sensitive dataHacker X

6 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Encrypted cloud storage

User

Server App Website

Decrypted Data

authentication

encrypted data

decryption script

decryption

Hacker

CSRF

XSS

Hacker

key

Friends?

sharing

7 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Encrypted cloud storage

User

Server App Website

Decrypted Data

authentication

encrypted data

decryption script

decryption

Hacker

CSRF

XSS

Hacker

key

Friends?

sharing

7 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Encrypted cloud storage

User

Server App Website

Decrypted Data

authentication

encrypted data

malicious script

decryption

Hacker

CSRF

XSS

Hacker

key

Friends?

sharing

7 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Encrypted cloud storage

User

Server App Website

Decrypted Data

authentication

encrypted data

decryption script

decryption

Hacker

CSRF

XSS

Hacker

key

Friends?

sharing

7 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Browser Extension

Server

Host Page

App Code

User

session

URL password

8 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Browser Extension

Server

Host Page

App Code

User

session

URL password

8 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Browser Extension

Server

Host Page

App Code

User

session

URL password

8 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Browser Extension

Server

Host Page

App Code

User

session

URL password

8 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Bookmarklet

Server

App Website Host Page

App Code

User

secret

session intention

session

URL password

9 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Bookmarklet

Server

App Website Host Page

App Code

User

secret

session intention

session

URL password

9 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Bookmarklet

Server

App Website Host Page

App Code

User

secret

session intention

session

URL password

9 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Bookmarklet

Server

App Website Host Page

App Code

User

secret

session intention

session

URL password

9 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Bookmarklet

Server

App Website Host Page

App Code

User

secret

session intention

session

URL password

9 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Bookmarklet

Server

App Website Host Page

App Code

User

secret

session intention

session

URL password

9 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Password Manager Bookmarklet

Server

App Website Host Page

App Code

User

secret

session intention

session

URL password

9 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks

What can go wrong?
I Incorrect use of crypto.
I Usual web attacks (XSS/CSRF).
I No data/code separation.
I Bad key management.

10 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks

What can go wrong?
I Incorrect use of crypto.
I Usual web attacks (XSS/CSRF).
I No data/code separation.
I Bad key management.

10 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks

What can go wrong?
I Incorrect use of crypto.
I Usual web attacks (XSS/CSRF).
I No data/code separation.
I Bad key management.

10 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks

What can go wrong?
I Incorrect use of crypto.
I Usual web attacks (XSS/CSRF).
I No data/code separation.
I Bad key management.

10 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

No ciphertext integrity protection

RoboForm Passcard
URL3:Encode(URL)

+PROTECTED-2+

<ENCk(username,password)>

1Password Keychain
{"uuid":...,"title":..., "location":URL,

"encrypted":<ENCk(username,password)>}

11 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

No ciphertext integrity protection

User

Content Server
google.com

ENC(u, p)

Application Client

google.com

p

Hacker
p

Friend
google.com

ENC(u, p)

share

12 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

No ciphertext integrity protection

User

Content Server
bad.com

ENC(u, p)

Application Client

bad.com

p

Hacker
p

Friend
google.com

ENC(u, p)

share

12 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

No ciphertext integrity protection

User

Content Server
google.com

ENC(u, p)

Application Client

google.com

p

Hacker
p

Friend
google.com

ENC(u, p)

share

12 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Classic problem: URL authenticating
I Browser extension-based password managers;
I Match URL with password database in JS.
I Error-prone RegExp matching.

parseUri pattern
/^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)

(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?

((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?

(?:#(.*))?)/

Incorrect
http://bad.com/#@accounts.google.com

13 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Classic problem: URL authenticating
I Browser extension-based password managers;
I Match URL with password database in JS.
I Error-prone RegExp matching.

parseUri pattern
/^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)

(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?

((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?

(?:#(.*))?)/

Incorrect
http://bad.com/#@accounts.google.com

13 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Classic problem: URL authenticating
I Browser extension-based password managers;
I Match URL with password database in JS.
I Error-prone RegExp matching.

parseUri pattern
/^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)

(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?

((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?

(?:#(.*))?)/

Incorrect
http://bad.com/#@accounts.google.com

13 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Classic problem: URL authenticating
I Browser extension-based password managers;
I Match URL with password database in JS.
I Error-prone RegExp matching.

parseUri pattern
/^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)

(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?

((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?

(?:#(.*))?)/

Incorrect
http://bad.com/#@accounts.google.com

13 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Classic problem: URL authenticating
I Browser extension-based password managers;
I Match URL with password database in JS.
I Error-prone RegExp matching.

parseUri pattern
/^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)

(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?

((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?

(?:#(.*))?)/

Incorrect
http://bad.com/#@accounts.google.com

13 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Fishing attack on 1Password extension

URL parsing code
var href = getBrowser().contentWindow

.location.href + "/";

var domain = href.replace(

/^http[s]*:\/\/(.*?)\/.*$/i, "$1");

var middle = domain.replace(

/^(www.)*(.*)/i, "$2");

return middle.substring(0,1).toUpperCase() +

middle.substring(1,middle.length);

Fishing URL
http://www.google.com:xxx@bad.com

14 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Fishing attack on 1Password extension

URL parsing code
var href = getBrowser().contentWindow

.location.href + "/";

var domain = href.replace(

/^http[s]*:\/\/(.*?)\/.*$/i, "$1");

var middle = domain.replace(

/^(www.)*(.*)/i, "$2");

return middle.substring(0,1).toUpperCase() +

middle.substring(1,middle.length);

Fishing URL
http://www.google.com:xxx@bad.com

14 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

1Password fishing attack

Server

Attacker

1Password

User

session

Fishing URL Google
password

15 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

1Password fishing attack

Server

Attacker

1Password

User

session

Fishing URL Google
password

15 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

1Password fishing attack

Server

Attacker

1Password

User

session

Fishing URL Google
password

15 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Code/data separation

Web interfaces
I Hard to maintain client-side decryption due

to Javascript limitations.
I Login form exposed to web attacks.
I Decryption in the same scope as various GUI

and user data.

16 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Code/data separation

Web interfaces
I Hard to maintain client-side decryption due

to Javascript limitations.
I Login form exposed to web attacks.
I Decryption in the same scope as various GUI

and user data.

16 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Code/data separation

Web interfaces
I Hard to maintain client-side decryption due

to Javascript limitations.
I Login form exposed to web attacks.
I Decryption in the same scope as various GUI

and user data.

16 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

SpiderOak

User

Server SpiderOak

session

JSON listing

Attacker
JSONP query

JSON listing

17 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

SpiderOak

User

Server SpiderOak

session

JSON listing

Attacker
JSONP query

JSON listing

17 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

SpiderOak

User

Server SpiderOak

session

JSON listing

Attacker
JSONP query

JSON listing

17 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

SpiderOak

Query
https://spideroak.com/storage/<u32>/?callback=f

Result
f({

"stats": {

"firstname": "...",

"lastname": "...",

"devices": ...,

},

"devices": [

["pc1", "pc1/"],["laptop", "laptop/"],...

]

})

18 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

SpiderOak

Query
https://spideroak.com/storage/<u32>/shares

Result
{

"share_rooms" : [

"url" : "/browse/share/<id>/<key>",

"room_key" : "<key>",

"room_description" : "" ,

"room_name": "<room>"

],

"share_id" : "<id>",

"share_id_b32" : "<u32>"

}

19 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Key management

A difficult challenge
I All applications implement some form of

sharing.
I Full database vs per-entry dilemma.
I Bias towards features rather than security.

20 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Key management

A difficult challenge
I All applications implement some form of

sharing.
I Full database vs per-entry dilemma.
I Bias towards features rather than security.

20 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Key management

A difficult challenge
I All applications implement some form of

sharing.
I Full database vs per-entry dilemma.
I Bias towards features rather than security.

20 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

LastPass login bookmarklet

Server

App Website Attacker

Bookmarklet

User

s

K

session intention

session

D, Encs,r (K), r

rootkit K

21 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

LastPass login bookmarklet

Server

App Website Attacker

Bookmarklet

User

s

K

session intention

session

D, Encs,r (K), r

rootkit K

21 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

LastPass login bookmarklet

Server

App Website Attacker

Bookmarklet

User

s

K

session intention

session

D, Encs,r (K), r

rootkit K

21 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

LastPass login bookmarklet

Server

App Website Attacker

Bookmarklet

User

s

K

session intention

session

D, Encs,r (K), r

rootkit K

21 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

LastPass login bookmarklet

Server

App Website Attacker

Bookmarklet

User

s

K

session intention

session

D, Encs,r (K), r

rootkit K

21 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

LastPass login bookmarklet

Server

App Website Attacker

Bookmarklet

User

s

K

session intention

session

D, Encs,r (K), r

rootkit K

21 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Key recovery by rootkiting

Key recovery by rootkiting
function _LP_START() {

_LP = new _LP_CONTAINER();

var d = {<encrypted form data>};

_LP.setVars(d, '<user>',

'<encrypted_key>', _LASTPASS_RAND, ...);

_LP.bmMulti(null, null);

}

Ben Adida, Adam Barth and Collin Jackson
Rootkits for JavaScript environments
WOOT’2009

22 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.

23 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.

23 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.

23 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.

23 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.

23 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.

23 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.

23 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks to defend against

Scoping problem
Undeclared variables are implicitely global.

Attack example
function _LP_START() {

_LP = new _LP_CONTAINER();

var d = {<encrypted form data>};

_LP.setVars(d, '<user>',

'<encrypted_key>', _LASTPASS_RAND, ...);

_LP.bmMulti(null, null);

}

24 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Scoping problem

Solution
I We use a monomorphic type inference

system.
I We forbid features that break lexical scoping:

arguments.caller, with(o)
I We need to distinguish functions and

methods.

25 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Scoping problem

Solution
I We use a monomorphic type inference

system.
I We forbid features that break lexical scoping:

arguments.caller, with(o)
I We need to distinguish functions and

methods.

25 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Scoping problem

Solution
I We use a monomorphic type inference

system.
I We forbid features that break lexical scoping:

arguments.caller, with(o)
I We need to distinguish functions and

methods.

25 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks to defend against

Implicit function calls
Some type casts implicitely call redefineable
functions.

Attack example
// Attacker

Object.prototype.valueOf =

function(){steal(this.secret)};

// Unsafe code

a = {secret:"x"} + 1

26 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Implicit function calls

Solution
I Monomorphic operators.
I Exceptions for safe typecasts (logical

negation).

27 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Implicit function calls

Solution
I Monomorphic operators.
I Exceptions for safe typecasts (logical

negation).

27 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks to defend against
Source code leaks
The source of functions published to the page is
public.

Attack example
// Attacker

window.registerEventListener =

function(t,f){steal(f+'')};

// Unsafe code

window.registerEventListener("message",

function(m)

{

if(m=="secret") doAction();

}

);

28 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Source code leaks

Solution
Functions posted to the page must be wrapped
in a function defined inside a with literal:

with({f:function(m){if(m=="secret") g();}})

registerEventListener("message",

function(m){return f(m);}

);

29 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks to defend against

Prototype poisoning
Accessing or creating a non-literal property can
cause calls to prototype functions.

Attack example
// Attacker

Object.prototype.__defineSetter__("secret",

function(v){steal(v);}

);

// Unsafe code

var o = {};

o.secret = 123;

30 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Prototype poisoning

Solution
I Completely literal definition of objects and

arrays.
I No dynamic accessor (main restriction).
I Type inference infers minimal set of property

that must be defined in object.
I When applied to literal object, verify object

signatures are compatible.
I For arrays, check bounds on length.

31 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Prototype poisoning

Solution
I Completely literal definition of objects and

arrays.
I No dynamic accessor (main restriction).
I Type inference infers minimal set of property

that must be defined in object.
I When applied to literal object, verify object

signatures are compatible.
I For arrays, check bounds on length.

31 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Prototype poisoning

Solution
I Completely literal definition of objects and

arrays.
I No dynamic accessor (main restriction).
I Type inference infers minimal set of property

that must be defined in object.
I When applied to literal object, verify object

signatures are compatible.
I For arrays, check bounds on length.

31 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Prototype poisoning

Solution
I Completely literal definition of objects and

arrays.
I No dynamic accessor (main restriction).
I Type inference infers minimal set of property

that must be defined in object.
I When applied to literal object, verify object

signatures are compatible.
I For arrays, check bounds on length.

31 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Prototype poisoning

Solution
I Completely literal definition of objects and

arrays.
I No dynamic accessor (main restriction).
I Type inference infers minimal set of property

that must be defined in object.
I When applied to literal object, verify object

signatures are compatible.
I For arrays, check bounds on length.

31 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Attacks to defend against

Functions and methods
A method used outside an object binds this to
the global object.

Attack example
// Unsafe code

with({secret: "x",

f:function(){this.secret = "y"}})

(function(){ var g = f; g()})();

32 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Functions and methods

Solution
I Two sets of rules for functions and methods (if

this is used).
I Methods have an an additional condition:

the object in which they are defined must
have a signature compatible with the set of
properties of this used in the function.

I Annoying special case for with-bound
methods.

33 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Functions and methods

Solution
I Two sets of rules for functions and methods (if

this is used).
I Methods have an an additional condition:

the object in which they are defined must
have a signature compatible with the set of
properties of this used in the function.

I Annoying special case for with-bound
methods.

33 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Functions and methods

Solution
I Two sets of rules for functions and methods (if

this is used).
I Methods have an an additional condition:

the object in which they are defined must
have a signature compatible with the set of
properties of this used in the function.

I Annoying special case for with-bound
methods.

33 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Type system

〈τ〉 ::= number | boolean | string | undefined
| α, β Type variable
| τ̃ → τ Arrow
| τ̃ [ρ]→ τ Method
| [τ]n Final Array
| [τ]>k Array schema
| ρ∗ Final object
| ρ Object schema

〈ρ〉 ::= {l1 : τ1, . . . , ln : τn}

34 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Scoping: function rule

Fun

body = (var y1 = e1, . . . ym = em; s; return r)
λ = fresh() α̃ = fresh()
∀j 6 m, Γ, f : λ, x̃ : α̃, (yi : µi)i<j ` ej : µj
Γ, f : λ, x̃ : α̃, ỹ : µ̃ ` s : undefined; r : τr

U(λ, α̃→ τr)

Γ ` function f (x̃){body} : α̃→ τr

35 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Object and Array accessors

PropR
τ = fresh() Γ ` e : σ U({l : τ}, σ)

Γ ` e.l : τ

ArrR
τ = fresh() Γ ` e : σ U([τ]>n+1, σ)

Γ ` e[n] : τ

36 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Dynamic accessors

Adding dynamic checks
It’s impossible to program without dynamic array
accessors. We introduce a dynamic check that
can be safely typed:
〈dyn_accessor〉 ::=
| (〈x〉 = @identifier) ‘[’ 〈expression〉

‘&’ @posint ‘%’ 〈x〉 ‘.length]’
| @identifier ‘[’ 〈expression〉 ‘&’ @posint ‘]’

Γ ` x : [τ]>1 Γ ` e : int n ∈ N∗
Γ ` x [e&n%x .length] : τ

Γ ` x : [τ]>n Γ ` e : int n ≡ 0[2]

Γ ` x [e&n] : τ

37 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Applications

Implementation
I We implemented a JavaScript parser and our

type system in OCaml.
I We implemented defensive versions of

HMAC-SHA-256 and AES-256-CBC and
ensured that they were well-typed in our
system.

I We used these primitives to build a safe
version of the LastPass bookmarklet.

38 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Applications

Implementation
I We implemented a JavaScript parser and our

type system in OCaml.
I We implemented defensive versions of

HMAC-SHA-256 and AES-256-CBC and
ensured that they were well-typed in our
system.

I We used these primitives to build a safe
version of the LastPass bookmarklet.

38 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Applications

Implementation
I We implemented a JavaScript parser and our

type system in OCaml.
I We implemented defensive versions of

HMAC-SHA-256 and AES-256-CBC and
ensured that they were well-typed in our
system.

I We used these primitives to build a safe
version of the LastPass bookmarklet.

38 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Perspectives

This work is incomplete
We are missing a formal security theorem about
our type system.

Current problems
I Requires a formal semantics of JavaScript.
I Existing operational semantics by Sergio

Maffeis lacks features that are critical to the
security of our subset (getters and setters).

I Other alternatives (λJS, related IBEX results at
Microsoft Research)?

39 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Perspectives

This work is incomplete
We are missing a formal security theorem about
our type system.

Current problems
I Requires a formal semantics of JavaScript.
I Existing operational semantics by Sergio

Maffeis lacks features that are critical to the
security of our subset (getters and setters).

I Other alternatives (λJS, related IBEX results at
Microsoft Research)?

39 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Perspectives

This work is incomplete
We are missing a formal security theorem about
our type system.

Current problems
I Requires a formal semantics of JavaScript.
I Existing operational semantics by Sergio

Maffeis lacks features that are critical to the
security of our subset (getters and setters).

I Other alternatives (λJS, related IBEX results at
Microsoft Research)?

39 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Perspectives

Other extensions
I Automatic defensiveness transformation,

automatic exploit generation.
I Subset extensions (constructors, dynamic

memory allocation with computational
security).

I New applications (single sign-on, client-side
oauth)

I Translation of JavaScript into the WebSpi
model in ProVerif.

40 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Perspectives

Other extensions
I Automatic defensiveness transformation,

automatic exploit generation.
I Subset extensions (constructors, dynamic

memory allocation with computational
security).

I New applications (single sign-on, client-side
oauth)

I Translation of JavaScript into the WebSpi
model in ProVerif.

40 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Perspectives

Other extensions
I Automatic defensiveness transformation,

automatic exploit generation.
I Subset extensions (constructors, dynamic

memory allocation with computational
security).

I New applications (single sign-on, client-side
oauth)

I Translation of JavaScript into the WebSpi
model in ProVerif.

40 / 40∨

http://prosecco.gforge.inria.fr/

Security Types for
Web Applications

Antoine Delignat-
Lavaud

Introduction
Goals
Browser security
Our contribution

Review of Host-Proof
Web Applications
Host-Proof Application Design
Ciphertext Integrity
URL Authentication
Code/data separation
Key management

Defensive JavaScript
Attacks to defend against
Type system
Applications

Conclusion and
Future Work

Perspectives

Other extensions
I Automatic defensiveness transformation,

automatic exploit generation.
I Subset extensions (constructors, dynamic

memory allocation with computational
security).

I New applications (single sign-on, client-side
oauth)

I Translation of JavaScript into the WebSpi
model in ProVerif.

40 / 40∨

http://prosecco.gforge.inria.fr/

	Introduction
	Goals
	Browser security
	Our contribution

	Review of Host-Proof Web Applications
	Host-Proof Application Design
	Ciphertext Integrity
	URL Authentication
	Code/data separation
	Key management

	Defensive JavaScript
	Attacks to defend against
	Type system
	Applications

	Conclusion and Future Work

