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Introduction: Our Goals

Security of Web Applications
I Application logic shared between web server

and browser client.
I Complex interaction over HTTP between at

least 2 main principals, often more.
I Other interactions between client / server

and third parties.
I Security goals: confidentiality and integrity of

communication, authentication, data access
control, sharing...

I Use of cryptography to achieve these goals.
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Web application overview

Server Browser

PHP JavaScript

HTML markup

JavaScript

CSS, images

AJAX

Web services
SSO...

Mashups
Like button...
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Our contribution
I We focus our attention on the client-side

interactions.
I We conducted a review on the security of

host-proof web applications and found a
variety of attack vectors.

I We investigated the problem of loading
trusted JavaScript code into an untrusted
environment.

I We propose a subset of JavaScript we belive
is safe to use in such environments.

I We implemented a type system able to
check if a given script belongs to that subset.
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Content Server Application Client

Sensitive dataHacker X
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Attacks

What can go wrong?
I Incorrect use of crypto.
I Usual web attacks (XSS/CSRF).
I No data/code separation.
I Bad key management.
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No ciphertext integrity protection

RoboForm Passcard
URL3:Encode(URL)

+PROTECTED-2+

<ENCk(username,password)>

1Password Keychain
{"uuid":...,"title":..., "location":URL,

"encrypted":<ENCk(username,password)>}
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No ciphertext integrity protection

User

Content Server
google.com

ENC(u, p)

Application Client

google.com

p

Hacker
p

Friend
google.com
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share
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Classic problem: URL authenticating
I Browser extension-based password managers;
I Match URL with password database in JS.
I Error-prone RegExp matching.

parseUri pattern
/^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)

(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?

((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?

(?:#(.*))?)/

Incorrect
http://bad.com/#@accounts.google.com
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parseUri pattern
/^(?:([^:\/?#]+):)?(?:\/\/((?:(([^:@]*)

(?::([^:@]*))?)?@)?([^:\/?#]*)(?::(\d*))?))?

((((?:[^?#\/]*\/)*)([^?#]*))(?:\?([^#]*))?

(?:#(.*))?)/

Incorrect
http://bad.com/#@accounts.google.com
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Fishing attack on 1Password extension

URL parsing code
var href = getBrowser().contentWindow

.location.href + "/";

var domain = href.replace(

/^http[s]*:\/\/(.*?)\/.*$/i, "$1");

var middle = domain.replace(

/^(www.)*(.*)/i, "$2");

return middle.substring(0,1).toUpperCase() +

middle.substring(1,middle.length);

Fishing URL
http://www.google.com:xxx@bad.com
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1Password fishing attack

Server

Attacker

1Password

User

session

Fishing URL Google
password
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Code/data separation

Web interfaces
I Hard to maintain client-side decryption due

to Javascript limitations.
I Login form exposed to web attacks.
I Decryption in the same scope as various GUI

and user data.
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SpiderOak

User

Server SpiderOak

session

JSON listing

Attacker
JSONP query

JSON listing
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SpiderOak

Query
https://spideroak.com/storage/<u32>/?callback=f

Result
f({

"stats": {

"firstname": "...",

"lastname": "...",

"devices": ...,

},

"devices": [

["pc1", "pc1/"],["laptop", "laptop/"],...

]

})
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SpiderOak

Query
https://spideroak.com/storage/<u32>/shares

Result
{

"share_rooms" : [

"url" : "/browse/share/<id>/<key>",

"room_key" : "<key>",

"room_description" : "" ,

"room_name": "<room>"

],

"share_id" : "<id>",

"share_id_b32" : "<u32>"

}
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Key management

A difficult challenge
I All applications implement some form of

sharing.
I Full database vs per-entry dilemma.
I Bias towards features rather than security.
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LastPass login bookmarklet

Server

App Website Attacker

Bookmarklet

User

s

K

session intention

session

D, Encs,r (K ), r

rootkit K
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Key recovery by rootkiting

Key recovery by rootkiting
function _LP_START() {

_LP = new _LP_CONTAINER();

var d = {<encrypted form data>};

_LP.setVars(d, '<user>',

'<encrypted_key>', _LASTPASS_RAND, ...);

_LP.bmMulti(null, null);

}

Ben Adida, Adam Barth and Collin Jackson
Rootkits for JavaScript environments
WOOT’2009
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Defensive JavaScript

Challenges of JavaScript static analysis
I Implicit initialization and global definition of

undeclared variables.
I Dynamic property access and creation.
I Weak, dynamic types (1+"x", "1.1"==1.1),

implicit function calls for conversions
(valueOf, toString).

I No distinction between functions, methods
and constructors.

I No static scoping (this, with).
I Prototype chain inheritence, redefineable

prototypes for base objects.
I Getters and setters.
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Attacks to defend against

Scoping problem
Undeclared variables are implicitely global.

Attack example
function _LP_START() {

_LP = new _LP_CONTAINER();

var d = {<encrypted form data>};

_LP.setVars(d, '<user>',

'<encrypted_key>', _LASTPASS_RAND, ...);

_LP.bmMulti(null, null);

}
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Scoping problem

Solution
I We use a monomorphic type inference

system.
I We forbid features that break lexical scoping:

arguments.caller, with(o)
I We need to distinguish functions and

methods.
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Attacks to defend against

Implicit function calls
Some type casts implicitely call redefineable
functions.

Attack example
// Attacker

Object.prototype.valueOf =

function(){steal(this.secret)};

// Unsafe code

a = {secret:"x"} + 1
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Implicit function calls

Solution
I Monomorphic operators.
I Exceptions for safe typecasts (logical

negation).
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Attacks to defend against
Source code leaks
The source of functions published to the page is
public.

Attack example
// Attacker

window.registerEventListener =

function(t,f){steal(f+'')};

// Unsafe code

window.registerEventListener("message",

function(m)

{

if(m=="secret") doAction();

}

);
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Source code leaks

Solution
Functions posted to the page must be wrapped
in a function defined inside a with literal:

with({f:function(m){if(m=="secret") g();}})

registerEventListener("message",

function(m){return f(m);}

);
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Attacks to defend against

Prototype poisoning
Accessing or creating a non-literal property can
cause calls to prototype functions.

Attack example
// Attacker

Object.prototype.__defineSetter__("secret",

function(v){steal(v);}

);

// Unsafe code

var o = {};

o.secret = 123;
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Prototype poisoning

Solution
I Completely literal definition of objects and

arrays.
I No dynamic accessor (main restriction).
I Type inference infers minimal set of property

that must be defined in object.
I When applied to literal object, verify object

signatures are compatible.
I For arrays, check bounds on length.
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I When applied to literal object, verify object

signatures are compatible.
I For arrays, check bounds on length.
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Attacks to defend against

Functions and methods
A method used outside an object binds this to
the global object.

Attack example
// Unsafe code

with({secret: "x",

f:function(){this.secret = "y"}})

(function(){ var g = f; g()})();
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Functions and methods

Solution
I Two sets of rules for functions and methods (if

this is used).
I Methods have an an additional condition:

the object in which they are defined must
have a signature compatible with the set of
properties of this used in the function.

I Annoying special case for with-bound
methods.
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Type system

〈τ〉 ::= number | boolean | string | undefined
| α, β Type variable
| τ̃ → τ Arrow
| τ̃ [ρ]→ τ Method
| [τ ]n Final Array
| [τ ]>k Array schema
| ρ∗ Final object
| ρ Object schema

〈ρ〉 ::= {l1 : τ1, . . . , ln : τn}
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Scoping: function rule

Fun

body = (var y1 = e1, . . . ym = em; s; return r)
λ = fresh() α̃ = fresh()
∀j 6 m, Γ, f : λ, x̃ : α̃, (yi : µi)i<j ` ej : µj
Γ, f : λ, x̃ : α̃, ỹ : µ̃ ` s : undefined; r : τr

U(λ, α̃→ τr )

Γ ` function f (x̃){body} : α̃→ τr
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Object and Array accessors

PropR
τ = fresh() Γ ` e : σ U({l : τ}, σ)

Γ ` e.l : τ

ArrR
τ = fresh() Γ ` e : σ U([τ ]>n+1, σ)

Γ ` e[n] : τ
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Dynamic accessors

Adding dynamic checks
It’s impossible to program without dynamic array
accessors. We introduce a dynamic check that
can be safely typed:
〈dyn_accessor〉 ::=
| (〈x〉 = @identifier) ‘[’ 〈expression〉

‘&’ @posint ‘%’ 〈x〉 ‘.length ]’
| @identifier ‘[’ 〈expression〉 ‘&’ @posint ‘]’

Γ ` x : [τ ]>1 Γ ` e : int n ∈ N∗
Γ ` x [e&n%x .length] : τ

Γ ` x : [τ ]>n Γ ` e : int n ≡ 0[2]

Γ ` x [e&n] : τ
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Applications

Implementation
I We implemented a JavaScript parser and our

type system in OCaml.
I We implemented defensive versions of

HMAC-SHA-256 and AES-256-CBC and
ensured that they were well-typed in our
system.

I We used these primitives to build a safe
version of the LastPass bookmarklet.
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Perspectives

This work is incomplete
We are missing a formal security theorem about
our type system.

Current problems
I Requires a formal semantics of JavaScript.
I Existing operational semantics by Sergio

Maffeis lacks features that are critical to the
security of our subset (getters and setters).

I Other alternatives (λJS, related IBEX results at
Microsoft Research)?
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Perspectives

Other extensions
I Automatic defensiveness transformation,

automatic exploit generation.
I Subset extensions (constructors, dynamic

memory allocation with computational
security).

I New applications (single sign-on, client-side
oauth)

I Translation of JavaScript into the WebSpi
model in ProVerif.
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