Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

References

Antoine Delignat-Lavaud Computer Science Department, École Normale Supérieure de Cachan

Commutative closures of regular

languages

Jul. 28. 2009

1

Outline

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free monoids

Varieties 9

Relationship with recognizable languages

3 Commutative closures Closure under P_4

References

Commutative closures of regular languages

Antoine **Delignat-Lavaud**

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P.

Antoine Delignat-Lavaud

Outline

Commutation relation

and irreflexive relation *I*.

• An independence or commutation relation is a symmetric

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

Antoine Delignat-Lavaud

Commutation relation

- An *independence* or *commutation* relation is a symmetric and irreflexive relation *I*.
- (Σ, I) is the independence alphabet

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

Antoine Delignat-Lavaud

?//S

Outline

Trace monoids and recognizability

АСНА

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

References

Commutation relation

- An *independence* or *commutation* relation is a symmetric and irreflexive relation *I*.
- (Σ, I) is the independence alphabet
- Can be represented as undirected commutation graph.

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

References

Commutation relation

- An *independence* or *commutation* relation is a symmetric and irreflexive relation *I*.
- (Σ, I) is the independence alphabet
- Can be represented as undirected commutation graph.
- Complement of *I* is the *dependence* relation *D*.

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

References

Commutation relation

- An *independence* or *commutation* relation is a symmetric and irreflexive relation *I*.
- (Σ, I) is the independence alphabet
- Can be represented as undirected commutation graph.
- Complement of *I* is the *dependence* relation *D*.

 The set of finite sequences of letters from an alphabet Σ is the free monoid Σ*.

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

- The set of finite sequences of letters from an alphabet Σ is the free monoid Σ*.
- Given a commutation relation *I*, the commutation equivalence ~*i* over Σ* is the least congruence such that ab ~*i* ba for all (a, b) ∈ *I*.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

- The set of finite sequences of letters from an alphabet Σ is the free monoid Σ*.
- Given a commutation relation *I*, the commutation equivalence ~*_I* over Σ* is the least congruence such that ab ~*_I* ba for all (a, b) ∈ I.
- The quotient M(Σ, I) = Σ*/~_I is the free partially *I*-commutative monoid or trace monoid.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

- The set of finite sequences of letters from an alphabet Σ is the free monoid Σ*.
- Given a commutation relation *I*, the commutation equivalence ~*_I* over Σ* is the least congruence such that ab ~*_I* ba for all (a, b) ∈ *I*.
- The quotient M(Σ, I) = Σ*/~_I is the free partially *I*-commutative monoid or trace monoid.

Elements from M are called traces.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

- The set of finite sequences of letters from an alphabet Σ is the free monoid Σ*.
- Given a commutation relation *I*, the commutation equivalence ~*_I* over Σ* is the least congruence such that ab ~*_I* ba for all (a, b) ∈ *I*.
- The quotient M(Σ, I) = Σ*/~_I is the free partially *I*-commutative monoid or trace monoid.
- Elements from M are called traces.
- ϕ denotes the canonical quotient homomorphism.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

- The set of finite sequences of letters from an alphabet Σ is the free monoid Σ*.
- Given a commutation relation *I*, the commutation equivalence ~*_I* over Σ* is the least congruence such that ab ~*_I* ba for all (a, b) ∈ *I*.
- The quotient M(Σ, I) = Σ*/~_I is the free partially *I*-commutative monoid or trace monoid.
- Elements from M are called traces.
- ϕ denotes the canonical quotient homomorphism.
- $[\cdot]_I$ denotes the closure operator $\phi^{-1} \circ \phi$.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

- The set of finite sequences of letters from an alphabet Σ is the free monoid Σ*.
- Given a commutation relation *I*, the commutation equivalence ~*_I* over Σ* is the least congruence such that ab ~*_I* ba for all (a, b) ∈ *I*.
- The quotient M(Σ, I) = Σ*/~_I is the free partially *I*-commutative monoid or trace monoid.
- Elements from M are called traces.
- ϕ denotes the canonical quotient homomorphism.
- $[\cdot]_I$ denotes the closure operator $\phi^{-1} \circ \phi$.
- If $t \in M$, a word *w* such that $t = [w]_{l}$ is a linearization of *t*.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P.

The free monoid case

 A recognizable language L ⊆ Σ* is a language accepted by a (deterministic or nondeterministic) finite state machine A = (Σ, Q, I, Δ, F). Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

The free monoid case

- A recognizable language L ⊆ Σ* is a language accepted by a (deterministic or nondeterministic) finite state machine A = (Σ, Q, I, Δ, F).
- Kleene's theorem: the class of recognizable word languages is the closure of the class of finite languages under product, union and iteration. (the rational languages).

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

The free monoid case

- A recognizable language L ⊆ Σ* is a language accepted by a (deterministic or nondeterministic) finite state machine A = (Σ, Q, I, Δ, F).
- Kleene's theorem: the class of recognizable word languages is the closure of the class of finite languages under product, union and iteration. (the rational languages).

$$(a^{*}(ba)^{*}(b(a+c)b^{*}b)^{*})^{*}$$

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

Antoine Delignat-Lavaud

CACHAN

Recognizability in non-free monoids

• An *M*-automaton is a tuple $\mathcal{A} = (Q, \delta, F)$.

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

Antoine Delignat-Lavaud

CACHAN

Recognizability in non-free monoids

- An *M*-automaton is a tuple $\mathcal{A} = (Q, \delta, F)$.
- Q is a finite monoid, $F \subseteq Q$.

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

Antoine Delignat-Lavaud

CACHAN

Recognizability in non-free monoids

- An *M*-automaton is a tuple $\mathcal{A} = (Q, \delta, F)$.
- Q is a finite monoid, $F \subseteq Q$.
- $\delta: M \rightarrow Q$ is an homomorphism of monoids.

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

Antoine Delignat-Lavaud

Recognizability in non-free monoids

- An *M*-automaton is a tuple $\mathcal{A} = (Q, \delta, F)$.
- Q is a finite monoid, $F \subseteq Q$.
- $\delta: M \rightarrow Q$ is an homomorphism of monoids.
- The subset of *M* recognized by \mathcal{A} is $\delta^{-1}(F)$.

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

References

Recognizability in non-free monoids

- An *M*-automaton is a tuple $\mathcal{A} = (Q, \delta, F)$.
- Q is a finite monoid, $F \subseteq Q$.
- $\delta: M \rightarrow Q$ is an homomorphism of monoids.
- The subset of *M* recognized by \mathcal{A} is $\delta^{-1}(F)$.

Recognizable \neq rational

$$(\Sigma, I) = a - b, L = (ab)^*.$$

 $\phi^{-1}(L) = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \}$

Syntactic monoid

Let *M* be a monoid and $T \subseteq M$. The syntactic preorder over *T*, \leq_T is defined by:

 $x \leq_T y$ if $\forall u, v \in M, uyv \in T \Rightarrow uxv \in T$

The syntactic equivalence $\equiv_{\mathcal{T}}$ is defined by

 $x \equiv_T y \Leftrightarrow x \leq_T y \land y \leq_T x$

The syntactic monoid of *T* is the quotient $M_T = M / \equiv_T$.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

Syntactic monoid

Let *M* be a monoid and $T \subseteq M$. The syntactic preorder over *T*, \leq_T is defined by:

 $x \leq_T y$ if $\forall u, v \in M, uyv \in T \Rightarrow uxv \in T$

The syntactic equivalence $\equiv_{\mathcal{T}}$ is defined by

 $x \equiv_T y \Leftrightarrow x \leq_T y \land y \leq_T x$

The syntactic monoid of *T* is the quotient $M_T = M / \equiv_T$.

Characterization of recognizable languages

A subset $T \subseteq M$ is recognizable if and only if, its syntactic monoid M_T is finite.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P4

Varieties of monoids and recognizable languages

Variety of monoids

A class of monoids closed under taking submonoids, left and right quotients and direct products. A *pseudovariety of monoids* is a variety of finite monoids.

Example

The class of all finite monoids is a pseudovariety. The class of finite groups is a pseudovariety denoted **G**. Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varietie

Relationship with recognizable languages

Commutative closures Closure under P.

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

References

Variety of languages

A variety of languages $\mathcal{V}(\Sigma)$ over some alphabet Σ is a family of recognizable languages such that for all Σ ,

• $\mathcal{V}(\Sigma)$ is a boolean algebra

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

References

Variety of languages

A variety of languages $\mathcal{V}(\Sigma)$ over some alphabet Σ is a family of recognizable languages such that for all Σ ,

- $\mathcal{V}(\Sigma)$ is a boolean algebra
- $\mathcal{V}(\Sigma)$ is closed under inverse of morphisms.

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

References

Variety of languages

A variety of languages $\mathcal{V}(\Sigma)$ over some alphabet Σ is a family of recognizable languages such that for all Σ ,

- $\mathcal{V}(\Sigma)$ is a boolean algebra
- $\mathcal{V}(\Sigma)$ is closed under inverse of morphisms.
- V(Σ) is closed under residuals

$$a^{-1}L, La^{-1}, a \in \Sigma, L \in \mathcal{V}(\Sigma).$$

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

References

Variety of languages

A variety of languages $\mathcal{V}(\Sigma)$ over some alphabet Σ is a family of recognizable languages such that for all Σ ,

- $\mathcal{V}(\Sigma)$ is a boolean algebra
- $\mathcal{V}(\Sigma)$ is closed under inverse of morphisms.
- V(Σ) is closed under residuals
 - $a^{-1}L, La^{-1}, a \in \Sigma, L \in \mathcal{V}(\Sigma).$

Variety theorem

The correspondance $V\to \mathcal{V}$ that maps to a variety of monoids V the variety of languages whose syntactic monoid is in V is one to one.

Polynomial closure

The polynomial closure Pol(L) of a class of language \mathcal{L} over Σ is the set finite unions of $L_0 a_1 L_1 a_2 \cdots a_n L_n$ whith $a_i \in \Sigma$ and $L_i \in \mathcal{L}$.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

Polynomial closure

The polynomial closure Pol(L) of a class of language \mathcal{L} over Σ is the set finite unions of $L_0a_1L_1a_2\cdots a_nL_n$ whith $a_i \in \Sigma$ and $L_i \in \mathcal{L}$.

Polynomials of group languages

- *Pol*(G) (the polynomial closure of the variety associated to G) is closed unter total commutation.
- It is closed under *I*-commutation if (Σ, *I*) does not have one of the two following induced subgraphs:

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

Polynomial closure

The polynomial closure Pol(L) of a class of language \mathcal{L} over Σ is the set finite unions of $L_0 a_1 L_1 a_2 \cdots a_n L_n$ whith $a_i \in \Sigma$ and $L_i \in \mathcal{L}$.

Polynomials of group languages

- *Pol*(*G*) (the polynomial closure of the variety associated to G) is closed unter total commutation.
- It is closed under *I*-commutation if (Σ, *I*) does not have one of the two following induced subgraphs:

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free

monoids Varieties

Relationship with recognizable languages

Commutative closures

Closure under P₄

P₄-closure of a group language

During the internship, we proved the following result:

The P_4 -closure of a group language is recognizable.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free

monoids Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

P₄-closure of a group language

During the internship, we proved the following result:

The P_4 -closure of a group language is recognizable.

$$(a+c)^*a - c^* - a(a+c)^*a \cdots$$

 $b^* - d(b+d)^*d - b^* \cdots$

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free

monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

P₄-closure of a group language

During the internship, we proved the following result:

The P_4 -closure of a group language is recognizable.

$$(a+c)^*a$$
 — c^* — $a(a+c)^*a$ …
 b^* — $d(b+d)^*d$ — b^* …

Proof

- Proof relies on structure of traces.
- Recognizability is shown using MSO logic
- See the internship report for more details.

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid Recognizability in non-free

monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

References

Commutative closures of regular languages

Antoine Delignat-Lavaud

Outline

Trace monoids and recognizability

The free partially commutative monoid

Recognizability in non-free monoids

Varieties

Relationship with recognizable languages

Commutative closures Closure under P₄

References

Gómez, Antonio Cano and Guaiana, Giovanna and Pin, Jean-Éric When Does Partial Commutative Closure Preserve Regularity? ICALP'2008