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Context and state of the art

The exponential development of web applications, accelerated by the con-
vergence of mobile and desktop platforms towards the web as illustrated by
the Windows 8 apps, written in JavaScript and reusable from the PC to the
smartphone, has led to a simultaneous increase in web attacks, which are rel-
atively easy to find and exploit but can impact huge amounts of users, as was
demonstrated by the recent and massive password leaks from Yahoo, LinkedIn
and Last.fm.

After the hype caused by “Web 2.0”, there has been a significant effort of
the research community to create formal tools to protect webpages from po-
tentially harmful JavaScript code loaded from external sources, such as a dis-
honest advertising company. This concept of Mashup security has led to devel-
opment of new tools to analyse the security of JavaScript code, most notabely
ADSafe and JSLint. However, these efforts have often been hampered by the
dynamic nature of JavaScript, which makes it a language poorly suited to static
analysis.

The studied problem

Starting from an overview of the security of host-proof web applications
and their (mis-)use of cryptography, we investigate classes of web attacks that
can be automatically discovered with the help of formal analysis tools. We
focus our attention on the relatively neglected problem of loading trusted code
in an untrusted heap environment shared by different origins, some of which
may be malevolent.

Our contribution

As a starting point, we conducted a review of various host-proof web ap-
plications: in that design, the user’s sensitive data is stored in encrypted form
on the cloud for backup and synchronization purposes, and is only decrypted
client-side using a password-derived key that stays unknown to the server.



Our results showed that such services, despite their popularity and security
minded design, suffered from various vulnerabilities, most of which were easy
to discover and exploit. We then addressed the question of loading trusted
code into an untrusted environment, the dual of the Mashup problem.

We discover that even in a heap completely controlled by a malicious party,
it is possible using language primitives to load code that is able to compute
cryptographic primitives and keep a secret hidden from the attacker. We iso-
late a small but still expressive subset of JavaScript with this property and show
that it is possible using typing techniques to check the defensiveness of an ar-
bitrary input code.

Relevance of our results

We implemented our type system and proceeded to edit a popular JavaScript
cryptography library to use our restricted JavaScript subset until it was ac-
cepted by our typechecker. We then used this defensive implementation of
cryptography to build new primitives, such as secure communication between
cross-origin principals in an unsafe environment. We also compared the per-
formance of our transformed code with the original. However, our work still
lacks an important component: a formal proof of the security guarantees of
defensive JavaScript in an untrusted heap.

Our paper reviewing web attacks on host-proof applications was accepted
at the Workshop on Offensive Technologies for the 2012 Usenix Security Sym-
posium. During our stay in Seattle for the conference, we met members of the
F* team at Microsoft Research who had been working on connected problems
in the context of fully abstract compilation of ML into JavaScript and whose
result we hope can help us achieve our goal of proving the formal security of
our subset.

Conclusion and further research

The last step required to complete this work is without a doubt to back
our defensiveness claim with a proven security theorem in arbitrary heaps in
a semantics that can account for even the most nefarious JavaScript features,
such as setters in the base object prototypes.

This work will be carried on in the form of a PhD at INRIA Paris.
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Foreword

This report presents the results of a 20-week in-
ternship of the author at Inria Paris, under the
supervision of Karthikeyan Bhargavan, head of
team PROSECCO (Programming Securely with
Cryptography) and Sergio Maffeis from Imperial
College during the author’s stay in London and
his visit at Inria. Since neither is a native French
speaker, and some of the material in this report
comes from a paper published at the Workshop
on Offensive Technologies (WOOT) from the 2012
USENIX Security Symposium, it is written in En-
glish.

1 Introduction

Since the broad popularization of Ajax, a web ap-
plication design that relies on JavaScript to per-
form asynchronous requests to retrieve and han-
dle dynamic data, there has been a clear trend to-
wards moving application and user data from per-
sonal devices to the web, amplified by the rapid
development of mobile platforms and an undeni-
able media hype for “Web 2.0” and “Cloud Com-
puting”.

While this evolution was permitted by the
adoption and implementation of new standards
(ECMA 262, DOM, XHTML, CSS), the security
model of web browsers, centered around the same
origin policy [1], itself based on domain names,
has seen very little change until recently, when
it became obvious that almost every big website
or web application relied on a wealth of external
libraries, content providers, advertisers and gad-
gets whose interactions could lead to severe secu-
rity faults.

This resulted in a spark of interest of the research
community leading to a variety of new defensive
mechanisms:

• extensions of the browser’s security policy:
permission model for Google Chrome exten-

sions [2], sandboxing techniques (HTML5
sandboxes, MashupOS [3], content security
policy [4] to isolate code from data);

• information flow analysis (FlowSafe [5],
Jif [6], jsflow [7]);

• restricted subsets of JavaScript in which se-
curity properties can be proven (ADSafe [8],
Google Caja [9], FBJS);

• formal models of web applications (Web-
Spi [10], Alloy [11]).

To better understand the goals of these tech-
niques, we now summarize the permission model
of a modern web browser, which is schematized in
figure 1.

When browsing a.com, a new JavaScript heap and
DOM (Document Object Model, which consists of
the abstract tree of the parsed HTML markup of
the page and an API to walk and perform opera-
tions on it) are created.

<script> tags can be used to load JavaScript,
either from a.com or any other origin like
ads.google.com. Such scripts are evaluated in
the same heap as the page, where it is possible
to perform asynchronous requests, but normally
only to a.com (in other words, it is possible to
load cross-origin scripts but not to perform cross-
origin Ajax requests. New mechanism have been
introduced to bypass this restriction if the target
server explicitely permits it).

<iframe> tags can be used to load external
HTML from any origin, for instance the Facebook
like button, into the page. Such frames always run
in a separate JavaScript heap, and if the origin of
the frame is different from its parent’s, like in the
Facebook case, the browser will isolate the sub-
tree of the main DOM rooted at the iframe. This
prevents the page from loading the Facebook login
page and stealing the user’s password by reading
it from the DOM. However, this separation is not
completely tight: communication by string mes-
sages is permitted via the postMessage method.
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Figure 1: Main security principals in a modern browser

<object> tags can be used to interact with binary
plugins running on the browser, for instance Flash
or Java. These objects often rely on an input file
(a JAR package in the case of Java), which is nor-
mally not permitted to be loaded across origins.
Nevertheless, there are ways around this restric-
tion, for instance to allow Youtube videos to be
loaded on any page, leading to a history of vul-
nerabilities.

Additionally, there may be extensions running on
the browser, which can request the permission to
load content scripts on pages that match some
origin patterns. Content scripts have access to
the DOM of the page they are loaded into, but
they run in a separate heap. Furthermore, they
have the same origin restriction on Ajax requests
as their host page and they don’t have access to
the privileged browser API of the core extension

scripts. Still, they can communicate with them
using a string message function.

Finally, bookmarks can also contain JavaScript
code that gets loaded into the current page when
clicked on by the user. They share the same heap
as the host page.

The two most common classes of vulnerabilities
in web applications are cross-site scripting (XSS)
and cross-site request forgery (CSRF). The former
happens when script from an untrusted origin gets
access to the DOM and heap of the victim origin.
It can then steal sensitive data from the DOM
(e.g. password form fields) or from the victim’s
server using Ajax and leak it to the attacker using
the fact that many HTML tags such as <img> or
<script> allow cross-origin queries. This class
of attack is very frequent due to the lack of code
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and data separation in HTML: virtually every tag
can cause some inline JavaScript to be executed.
Hence, improperly sanitized user input can end
up in the DOM of the application, for instance
in a comments section. The recentely introduced
content security policy (CSP) allows website to
disable all inline script evaluation in supporting
browsers at the cost of enforcing best practise for
code separation.

On the other hand, CSRF attacks rely on the
fact that most websites use cookie based ses-
sions to authenticate users. Cookies are origin-
bound persistent data stored by the browser on
the server’s request and sent back along with
every following query to that origin. Typi-
cally, they contain a session token that proves
the user is logged into that website. Using an
iframe, an attacker can then force the user to per-
form a malicious action, such as sending him to
changepassword.php?newpassword=xxx. Such
attacks are also extremely widespread, and re-
quire specific protections in the form of an action
token or checking the Referer header to protect
against.

2 Motivating Case Study

The first step of our work was to conduct an
overview of a class of web applications relying on
the host-proof design. The philosophy of this de-
sign is to leverage the extended capabilities of cur-
rent browsers to store sensitive user data remotely
in encrypted form and have every operation on
the data be performed client-side using the user’s
decryption key, which remains unknown to the
server.

Several reasons motivated this choice: firstly, all
these applications are intended to protect sensi-
tive information, such as personal files and pass-
words, making them prime targets for attacks;
secondly, they are popular, commercial services
which we expected to be very security concious;

Figure 2: Host-proof web application architecture

lastly, all relied on client-side implementations of
cryptographic primitives, notably in a JavaScript
context prone to web attacks, a model that aside
from WebSpi [10] is rarely considered by the for-
mal analysis community.

The goal of this survey was to determine possible
patterns of vulnerabilities and if tools could be
built to automatically find and and defend against
them. Most of the material from this section is
from our paper at WOOT’12 [12], which is avail-
able from the conference website1.

2.1 Host-Proof Web Applications

A host-proof web application follows the archi-
tecture depicted in Figure 2. Personal data is en-
crypted on the client using a key or passphrase
known by the user, while the web server only acts
as an encrypted data store. The full functionality
of the application is implemented in the client-
side app, which performs all encryptions and de-
cryptions, backs up the database to the server
and, only when the user authorizes it, shares de-
crypted data with other users or websites. Since
the server never sees unencrypted data (nor any
decryption key, ideally), even if an attacker steals
the database from the server, he cannot recover

1https://www.usenix.org/conference/woot12
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the cleartexts without substantial computational
effort to brute-force through every user’s decryp-
tion key.

This design is sometimes called cryptographic
cloud storage, and may use cryptographic mecha-
nisms that enable some operations on encrypted
data (such as search) [13]. The design is also
sometimes misleadingly called zero-knowledge [14,
15]. We use the more neutral term host-proof to
simply mean that the security of the application
does not depend on trusting the server.

We consider two classes of host-proof web appli-
cations: cloud-based storage and password man-
agers.

• Storage services, such as Wuala [16] and Spi-
derOak [15], offer a remote encrypted backup
folder synchronized across all of the user’s de-
vices. The user may explicitly share specific
sub-folders or files with other users, groups,
or through a web link. Application such as
BoxCryptor and CloudFogger add client-side
encryption to non-host-proof storage services
such as Dropbox.

• Password managers, such as LastPass [17],
1Password [18], and Roboform [19], offer to
store users’ confidential data, such as login
credentials to different websites, or credit
card numbers. When the user browses to a
website, the password manager offers to au-
tomatically fill in the login form with a user-
name and password retrieved from the en-
crypted database. The password database
is backed up on a server and synchronized
across the user’s devices.

These applications differ from each other in their
precise use of cryptography and in their choice of
web interfaces. However, their common security
goals are:

• confidentiality : unshared user data must be
kept secret from all web-based adversaries
(including the server application itself);

• integrity : encrypted user data cannot be
tampered with without it being detected by
the client;

• authorized sharing : data shared by the user
may be read only by explicitly authorized
principals.

We found five exemplary attacks on commercial
host-proof applications that break these security
goals by exploiting flaws in both their crypto-
graphic design and their web interfaces. Tables 1
and 2 shows a brief summary of the features im-
plemented by a number of host-proof applications.
In particular, Table 1 notes the cryptographic
algorithms and mechanisms used, while Table 2
summarizes the various web interfaces offered. We
describe them in more detail when needed to ex-
plain our attacks.

2.2 Metadata Tampering Attacks on
Client-side Encryption

Client-side encryption typically relies on the user
either knowing an encryption key or knowing a se-
cret passphrase from which a key may be derived.
All the applications analyzed in this paper sup-
port the PBKDF2 password-based key derivation
function [20] that takes a passphrase p, salt s, and
iteration count c, and generates an encryption key
k (of a given length):

k = KDF(p, s, c)

The salt ensures that different keys derived from
the same passphrase are independent and a high
iteration count protects against brute-force at-
tacks by stretching the low-entropy password [21].
The choice of s and c varies across different ap-
plications; for example LastPass uses a username
as s and c = 1000, whereas SpiderOak uses a
random s and c = 16384. When c is too low
or the passphrase p is used for other (cheaper)
computations, the security of the application can
be compromised [22]. The attacks in this paper
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Name Format Key Derivation Encryption Encrypted Data Integrity Metadata Protection

Wuala Blobs PBKDF2-SHA256 AES, RSA Files, Folders HMAC !

SpiderOak Files PBKDF2-SHA256 AES, RSA Files HMAC !

BoxCryptor Files PBKDF2 AES Files, Filenames None #

CloudFogger Files PBKDF2 AES, RSA Files None #

LastPass XML PBKDF2-SHA256 AES, RSA Fields None #

PassPack JSON SHA256 AES Records None !

RoboForm PassCard PBKDF2 AES, DES Records None #

1Password Keychain PBKDF2-SHA1 AES Records None #

Clipperz JSON SHA256 AES Records SHA-256 !

Table 1: Example host-proof web applications and their cryptographic features

Name Backup Location Remote Access Bookmarklet Client Local Page Extension

Wuala Application Server Java Web Applet # ! ! #

SpiderOak Application Server JavaScript Website # ! # #

BoxCryptor Third-party (Dropbox) None # ! # #

CloudFogger Third-party (Dropbox) None ! ! # #

LastPass Application Server JavaScript Website ! # # !

PassPack Application Server JavaScript Website ! # # #

RoboForm Application Server None ! ! # !

1Password Third-party (Dropbox) None # ! # !

Clipperz Application Server JavaScript Website ! # ! #

Table 2: Example host-proof web applications and their web interfaces

do not rely on brute-force attacks against pass-
words. In the rest of this paper, we assume that
all passphrases and keys derived from them are
strong and unguessable.

Given an encryption key k and data d, each appli-
cation uses an encryption algorithm to generate a
ciphertext e:

e = ENC(k, d)

The applications in this paper all support AES
encryption, either with 128-bit or 256-bit keys,
and a variety of encryption modes (CTR, CBC,
CFB). Some applications also support other al-
gorithms, such as Blowfish, Twofish, 3DES, and
RC6. In this paper, we assume that all these en-
cryption schemes are correctly implemented and
used. Instead, we focus on what is encrypted and
how encrypted data is handled.

On storage services, such as SpiderOak and
Wuala, each file is individually encrypted using

AES and then integrity protected using HMAC

(with another passphrase-derived key)

h = HMAC(k′,ENC(k, d))

To avoid storing multiple copies of the same file,
some services, including Wuala, perform the en-
cryption in two steps: first the file is encrypted
using the hash of its contents as key, then the
hash is encrypted with a passphrase-derived key.

e = ENC(HASH(d), d),ENC(k,HASH(d))

The first encryption doesn’t depend on the user,
enabling global deduplication: the server can
identify and consolidate multiple copies of a file.
Although the contents of each file is encrypted,
metadata, such as the directory structure and file-
names, may be left unecrypted to enable directory
browsing.
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Some password managers, such as LastPass, sep-
arately encrypt each data item: username, pass-
word, credit card number, etc. but leave the
database structure unencrypted. Others, such as
Roboform and 1Password, encrypt each record
as a separate file. Still others encrypt the full
database atomically. In all these cases, there is
often no integrity protection. Moreover, some
metadata, such as website URLs, may be left un-
encrypted to enable search and lookup.

When metadata is left unencrypted and is not
strongly linked to the encrypted user data using
some integrity mechanism (such as HMAC), it be-
comes vulnerable to tampering attacks. We illus-
trate two such attacks.

RoboForm Passcard Tampering The Robo-
form password manager stores each website login
in a different file, called a passcard. For example,
a Google username and password would be stored
in a passcard Google.rfp of the form:

URL3:Encode(‘https://accounts.google.com’)

+PROTECTED-2+

<ENC(k,(username,password))>

That is, it contains the plaintext URL (encoded in
ASCII) and then an encrypted record containing
all the login data for the URL. By opening this
passcard in RoboForm, the user may directly lo-
gin to Google using the decrypted login data. No-
tably, nothing protects the integrity of the URL.
So, if an adversary can modify the URL to bad.com,
RoboForm will still decrypt and verify the pass-
card and leak the Google username and password
to the attacken when the user browses bad.com.

A web-based attacker can exploit this vulnera-
bility in combination with RoboForm’s passcard
sharing feature. RoboForm users may send pass-
cards over email to their friends. So if an ad-
versary could intercept such a passcard and re-
place the URL with bad.com, the website can then
steal the secret passcard data. Similar attacks

apply when synchronizing RoboForm with a com-
promised backup server or when malware on the
client has access to the RoboForm data folder.

1Password Keychain Tampering 1Password
uses a different encryption format, but similarly
fails to protect the integrity of the website URL.
For example, a Google record in 1Password’s Key-
chain format is of the form:

{"uuid":"37F3E65BA83C4AB58D8D47ED26BD330B",

"title":"Google",

"location":"https://accounts.google.com/",

"encrypted":<ENC(k,(username,password))>}

Hence, an attacker who has write access to the
keychain may similarly modify the location field
to bad.com and obtain the user’s Google password.
Concretely, since 1Password keychains are typi-
cally shared over Dropbox, any attacker who has
(temporary) access one of the user’s Dropbox-
connected devices will be able to tamper with the
keychain and cause it to leak secret data to mali-
cious websites.

Towards Authenticated Encryption It is
generally accepted among the cryptographic
community that “encryption without integrity-
checking is all but useless”[23]. A simple fix to
tampering attacks would be to use an HMAC to
protect the integrity of both the metadata and the
encrypted items.

More generally, many host-proof applications use
encryption algorithms as if they guaranteed ci-
phertext integrity. This is an incorrect assump-
tion for many modes of AES and other algorithms.
Instead, each password manager should seek to
implement a scheme that provides authenticated
encryption with associated data [24], where the
associated data includes metadata such as web-
site URLs.

Vulnerability Response We notified both
1Password and Roboform about these attacks on
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April 3, 2012. The 1Password team responded
within days that they are designing a new key-
chain format with integrity protections for their
next version (4.0). The Roboform team proved
more resistant. They first questioned our threat
model (“if a malware can modify passcards, it
can be just a keylogger instead”), but our attack
works even on passcards transported over inse-
cure email. Despite our demo, they refused to
believe that we can tamper with passcards (“pro-
duce as many passcards as you want and then
modify them. they all should be rejected”). We
are continuing our discussions with Roboform but
do not currently anticipate any fixes. Both vul-
nerabilities have been publicly disclosed [25, 26].

2.3 Cross-Site Request Forgery on Re-
mote Web Access

Some host-proof applications such as LastPass
and SpiderOak offer fully-featured JavaScript in-
terfaces to its roaming users. A user may login
to the website with her passphrase and access her
data. However, the passphrase itself should never
be sent to the server; instead the JavaScript client
should derive decryption keys within the browser.
Ideally, all decryptions would also be run within
the user’s browser, but for efficiency, some de-
cryptions may be executed server-side, with the
promise that decryption keys are destroyed on lo-
gout.

SpiderOak JSONP CSRF Attack The Spi-
derOak website uses AJAX with JSONP to re-
trieve data about the user’s devices, directory
contents and share rooms. So, when a user
is logged in, a GET request to /storage/<u32>/?

callback=f on https://spideroak.com where <u32> is
the base32-encoded username returns:

f({"stats":

{"firstname": "Legit",

"lastname": "User", "devices": 3, ...

"devices": [["homepc", "homepc/"],

["laptop", "laptop/"],

["mobile","mobile/"]]}})

Hence, by accessing the JSON for each device (e.g.
/storage/homepc/), the JavaScript client retrieves
and displays the entire directory structure for the
user.

It is well known that JSONP web applications
are subject to Cross-Site Request Forgery if they
do not enforce an allowed origin policy [27]. Spi-
derOak enforces no such policy, hence if a user
browsed to a malicious website while logged into
SpiderOak, that website only needs to know or
guess the user’s SpiderOak username to retrieve
JSON records for her full directory structure.

More worryingly, if the user has shared a pri-
vate folder with her friends, accessing the JSON
at /storage/<u32>/shares yields an array of shared
“rooms” that includes access keys:

{"share_rooms" :
[{ "url" : "/browse/share/<id>/<key>" ,

"room_key" : "<key>" ,
"room_description" : "" ,
"room_name":<room>} ] ,

"share_id" : "<id>" ,
"share_id_b32" : "<u32>"}

So, the malicious website may now at leisure ac-
cess the shared folders at https://spideroak.com/

browse/share/<id>/<key> to steal all of a user’s
shared data.

Key Management for Shared Data Our at-
tack can be prevented by simply adding standard
CSRF protections to all the JSONP URLs offered
by SpiderOak. A more general design flaw is the
management of encryption for shared data. When
a folder is shared by a user, it is decrypted and
stored in plaintext on the server, protected only
by a password that is also stored in plaintext on
the server. This breaks the host-proof design com-
pletely since flaws in the SpiderOak website may
now expose the contents of all shared folders (as
indeed we found). A better design would be to use
encrypted shared folders as in Wuala [28], where
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decryption keys are temporarily provided to the
website but not stored permanently.

Vulnerability Response We notified the Spi-
derOak team about the attack on May 21, 2012;
they acknowledged the issue and disabled JSONP
within one hour. However, no change was made to
the management of share room keys, and no ad-
ditional protections against CSRF attacks, such
as Referer or token based checks, have been put
in place, which leaves shared folders on SpiderOak
still open to other website attacks. Notably, many
of the problems reported on the SpiderOak Secu-
rity Response page have been cross-site scripting
weaknesses.

2.4 Stealing Data from Client-side
Websites

Wuala is a Java application that may be run di-
rectly as a desktop client or as a Java applet from
the Wuala website. It maintains an encrypted di-
rectory tree where each file is encrypted with a
different key and the hierarchy of keys is main-
tained by a sophisticated key management struc-
ture [28]. When started, Wuala asks for a user-
name and password, uses them to derive a master
key which is then used to decrypt the directory
tree. On Windows systems, Wuala creates the
following local directory structure:

%userprofile%/AppData

Local

Wuala

Data (local cache)

Roaming

Wuala

defaultUser (master key file)

The defaultUser file contains the master key for
the current user. The Data folder contains the en-
crypted directory tree along with plaintext data
for files that have been recently uploaded or down-
loaded from the server.

Wuala also runs a lightweight HTTP server on
localhost at port 33333. This HTTP server is pri-
marily meant to provide various status informa-
tion, such as whether Wuala is running, whether
backup is in progress, log error messages, etc. It
may also be used to open the Wuala client at an
given path from the browser. The user may en-
able other users on the LAN to access this HTTP
server to monitor its status. The HTTP server
cannot be disabled but is considered a mostly
harmless feature.

Database recovery attack on Wuala We
discovered a bug on the Wuala HTTP server,
where files requested under the /js/ path resolve
first to the contents of the main Wuala JAR pack-
age (which has some JavaScript files) and then, if
the file was not found, to the content of Wuala’s
starting directory.
If Wuala was launched as an applet, its start-
ing directory will be Roaming in the above tree,
meaning that browsing to http://localhost:33333/

js/defaultUser will return the master key of the
current active user. Using this master key file
anyone can masquerade as the user and obtain
the full directory tree from Wuala.
If Wuala was started from as a desktop client, its
stating directory will be Local instead, allowing
access to the local copy of the database, including
some plaintext files.
These flaws can be directly exploited by an at-
tacker on the same LAN (if LAN access to the
HTTP server is enabled; it isn’t by default), or
by any malware on the same desktop (even if the
malware does not have permission to read or write
to disk or to access the Internet). The attacker
obtains the full database if Wuala was started as
an applet, and some decrypted files otherwise.

Protecting Keys from Web Interfaces Our
attack relies on a bug in the HTTP server, it sim-
ply should not allow access to arbitrary files under
the /js/ path.
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More generally, the attack reveals a design weak-
ness that the Wuala master key is available in
plaintext when Wuala is running and is stored in
plaintext on disk if the user asks Wuala to re-
member his password. This file is extremely sen-
sitive since obtaining the file is adequate to re-
constructs and decrypt a complete copy of the
user’s directory tree. The software architecture
of Wuala makes the file available to all parts of
the application including the HTTP server. We
advocate a more modular architecture that iso-
lates key material and cryptographic operations
in separate processes from web interfaces.

Vulnerability Response We notified the
Wuala team about the vulnerability on May 21,
2012. They responded immediately and releaded
an update (version 399) within 24 hours that dis-
abled directory browsing on the local web server.
No other change was made to the HTTP server
or master key cache file following our report. The
vulnerability has been publicly disclosed [29].

2.5 Phishing Attacks on Browser Ex-
tensions

Password managers typically offer browser exten-
sions that can be used to fill forms automatically
on known websites. These extensions are written
in JavaScript and either implement cryptography
in JavaScript (e.g. LastPass) or call out to an
external desktop application (e.g. 1Password and
Roboform).
When a user visits a website, say gmail.com with a
password manager’s browser extension installed,
the extension examines the URL of the page to
decide whether or not to automatically fill in the
login form (using data retrieved and decrypted
from the database). However, the code for parsing
the URL is often flawed and does not account for
maliciously crafted URLs.

1Password Phishing Attack For example,
the URL parsing code in the 1Password exten-

sion (version 3.9.2) attempts to extract the top-
level domain name from the URL of the current
page:

var href = getBrowser().contentWindow.location.href

+ "/";

var domain = href.replace(/^http[s]*:\/\/(.*?)\/.*$/i,

"$1");

var middle = domain.replace(/^(www.)*(.*)/i, "$2");

return middle.substring(0,1).toUpperCase() +

middle.substring(1,middle.length);

So given a URL http://www.google.com, this code
returns the string Google.com. However, this code
does not correctly account for URLs of the form
http://user:password@website. So, suppose a ma-
licious website redirected a user to the url http:

//www.google.com:xxx@bad.com. The browser would
show a page from http://bad.com (after trying to
login as the “user” Google.com), but the 1Pass-
word browser extension would incorrectly assume
that it was on the domain Google.com and release
the user’s Google username and password. This
amounts to a phishing attack but notably not on
the user, but on the browser extension.
Similar attacks can be found on other password
managers, such as RoboForm’s Chrome extension,
that use URL parsing code that is not defensive
enough.

URL Parsing Parsing URLs correctly with
regular expressions is a surprisingly difficult
task, despite URLs having a well understood
syntax [30], and leading websites often get it
wrong [31]. Perhaps the most widely used URL
parsing library for JavaScript is parseUri [32]
which uses the following regular expression (in
“strict” standard-compliance mode):

s t r i c t : /ˆ (? : ( [ ˆ :\/?#]+) : )
? ( ? : \ / \ / ( ( ? : ( ( [ ˆ :@] ∗ ) ( ? : : ( [ ˆ :@] ∗ ) ) ?) ?@
) ? ( [ ˆ :\/?#]∗ ) ( ? : : ( \ d∗) ) ?) )
? ( ( ( ( ? : [ ˆ ?#\/ ]∗\/ ) ∗) ( [ ˆ?#]∗ ) )
( ? :\ ? ( [ ˆ# ]∗ ) ) ? ( ? :#( .∗ ) ) ?) /

This regular expression is also incom-
plete. For example, given the URL
http://bad.com/#@accounts.google.com, it yields
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a domain accounts.google.com whereas the correct
interpretation is bad.com.

Domain-based authorization Password
managers authorize websites based on their
domain name. The basic flaw that enables our
phishing attacks is that the interpretation of the
domain of the URL by the browser extension
is inconsistent with the interpretation of the
browser. Even if the extension were right and
the browser were wrong, a secret password may
be leaked. An easy fix that prevents our attack
is for the extension to directly use the parsed
window.location object given by the browser. A
different fix is to use a careful regular expression
parser that mimics the browser.
A more general design question is whether
domain-based authorization is appropriate for
website login. On hosting websites such as Word-
Press and Google Sites, hundreds of different web-
sites may share the same domain name, caus-
ing password managers to be very error-prone.
Moreover, users may wish to only release their
passwords over HTTPS, but domains do not in-
clude protocol information. So for example, if a
user asked LastPass to remember her password to
https://facebook.com, and later she was redirected
to the HTTP login form on http://facebook.com,
LastPass will happily fill in her username and
password, revealing it to any eavesdroppers. We
advocate that password managers implement site-
specific authorization policies that include pro-
tocols and full domain names, enabling users to
choose their desired level of security.

Vulnerability Response We notified 1Pass-
word about this vulnerability on April 3, 2012.
The 1Password team responded within days and
released a new beta version of their browser exten-
sions (build 39304) that implements a new, more
careful, URL parsing functions. This fixes the
specific attack that we found but a full verifica-
tion of their new URL parsing code and its con-

sistency with different browsers remains an open
question. The 1Password vulnerability has been
publicly disclosed [33].

2.6 Rootkit attacks on bookmarklets

Bookmarklets are bookmarks that contain a frag-
ment of Javascript code. When clicked, this code
is injected into the current active page, a fea-
ture commonly used by password managers to
fill login forms on the page using the user’s pass-
word database. Bookmarklets can be considered
lightweight substitutes for browser extensions and
are particularly suited for mobile and roaming
users. Unlike extensions, bookmarklets are evalu-
ated inside the Javascript scope of the page they
are being injected into, making them vulnerable
to a variety of threats, collectively called rootkit
attacks [34] that are very hard to protect against.
Of particular concern are bookmarklets that han-
dle sensitive data like passwords: they must en-
sure that they do not inadvertently leak the data
meant for one site to another. The countermea-
sure proposed in [34] addresses exactly this prob-
lem by verifying the origin of the website and has
been adopted by a number of password managers,
including LastPass and PassPack. However, they
are still vulnerable to attack.

LastPass master key theft The LastPass Lo-
gin bookmarklet loads code from lastpass.com that
defines various libraries and then runs the follow-
ing (stripped down) function:

function _LP_START() {

_LP = new _LP_CONTAINER();

var d = {<encrypted form data>};

_LP.setVars(d, ’<user>’,

’<encrypted_key>’, _LASTPASS_RAND, ...);

_LP.bmMulti(null, null);

}

This code retrieves the encrypted username and
encrypted password for the current website, it
downloads a decryption key (encrypted with the
secret key associated with the bookmarklet), and
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uses the decryption key to decrypt the user-
name and password before filling in the login
form. Even though the decryption key is it-
self encrypted, it is enough to know <user> and
_LASTPASS_RAND to decrypt it. Hence, a malicious
page can detect when the _LP_CONTAINER object be-
comes defined (i.e. when the user has clicked the
Lastpass bookmark), redefine this object and call
_LP_START again to decrypt and leak the key, user-
name, and password.
Since the username and password are meant for
the current (malicious) page, this does not seem
like a serious attack, until we note that the de-
cryption key obtained by this attack is the un-
changing master key used to encrypt all the
usernames and passwords in the user’s LastPass
database. Hence, the bookmarklet leaks the de-
cryption key for the full database to a malicious
website.
A similar attack applies to the PassPack book-
marklet where an attacker can steal a page-
specific, temporary encryption key to add a new
record into the user’s password database for any
URL.

Per-record Key Derivation To protect host-
proof applications against bookmarklet attacks,
it is not enough to strongly authenticate the page
that loads the content script. We also need to
verify that the website is authorized to read any
secret included in the content script. For exam-
ple, our attacks would not be so serious if the
keys revealed by the bookmarklet were specific to
the website. Instead, they reveal a design flaw
in the ways keys are used in LastPass; LastPass
derives a master key from a username and a mas-
ter password, without using any seed. This key
remains constant for a long time (until the mas-
ter password is changed). Moreover, it is used
to individually encrypt each username and pass-
word field, and also used to re-encrypt the full
database. To correctly implement data sharing
with different websites, we advocate that different

keys be generated for different records, by using
per-record salts, or by including the URL (or its
domain name) into the key derivation process.

Vulnerability Response We notified Lastpass
about the vulnerability on May 21, 2012. The
Lastpass team acknowledged the risks of leak-
ing the master decryption key to the host page
and changed their bookmarklet design within 24
hours. Decryption is now performed inside an
iframe within the Lastpass origin, preventing the
host page from stealing the key.

2.7 Case Study Conclusions

Our survey revealed different classes of problems
in the design and implementation of host-proof
applications; for each one, existing methods can
be developed to address the issue:

• many applications had key management
problems, amplifying the effects of web at-
tacks, and other misuses of cryptographic
primitives. In most cases, such issues are im-
possible to fix after the application has been
deployed, hence it is highly desirable to en-
courage the use of formal analysis tools such
as ProVerif [35] in the WebSpi model to ver-
ify the soundness of cryptographic protocols
used by the application;

• access control problems and accidental re-
lease of private data can be detected with
the progress of control flow and taint anal-
ysis techniques;

• JavaScript is poorly suited to implementing
cryptosystems that are not vulnerable to web
attackers. When decryption operations are
performed in an untrusted host’s heap, or in
the case of decryption running along cross-
origin scripts, there are many way for a mali-
cious principal to spy on the decryption keys
and plaintexts. Even though there has been
a large amount of research in language-based
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security of mashups [8, 36, 37], they all aim
to protect a trusted host page from untrusted
external scripts (e.g. potentially malicious
ads). The question of running trusted code in
a potentially untrusted environment or com-
municating between two cross-origin scripts
without the host (intentionally or inadver-
tently) tampering is not covered by existing
research.

In the next section, we present our main con-
tribution: a subset of JavaScript that is safe to
run in an untrusted (rootkited) heap. We then
demonstrate and implement an algorithm to de-
cide membership to that subset, which we use
to build an implementations of a hash function
and encryption algorithm and how to use them to
solve the above problem.

3 Defensive JavaScript Subset

The starting point of this section is the follow-
ing problem: what are the security properties
that can be enforced on code loaded into an ar-
bitrary JavaScript heap? The LastPass book-
marklet from the previous section is an instance
of this problem. This bookmarklet contains a se-
cret shared with the LastPass server and used to
prove that it is the user (and not the page on its
own behalf) that is trying to log in. However, this
secret is leaked to the host page when the book-
marklet is used, a problem that we found in every
other bookmarklet we checked that contained a
secret, like SuperGenPass, a bookmarklet able to
generate domain specific passwords from a master
password that if leaked to the host can reveal the
user’s password on other websites.
A first possible security property to consider
would be to require that the heap, regardless of
its initial state, remains unchanged after running
a defensive script. However, this prevents any in-
teraction with the host page, making the script
effectively useless. Instead, we mark two heap
locations: one for the page-specific parameters

(stored as a primitive type: number, string or
boolean) and a fresh one for releasing the result
of the script to the page, we then require that the
evaluation of the defensive script never accesses
any heap location beside those two.
Even though this may seem like a simple prop-
erty to prove, it turns out that there are many
JavaScript features that make it very difficult to
hold true, let along prove. Our initial goal was to
prove this property in the operational semantics
for JavaScript proposed by Maffeis [38], however
some features from the latest ECMA specification
of JavaScript that are very important to the secu-
rity of defensive code are missing from the seman-
tics. Hence, we do not yet have a formal security
theorem for our JavaScript subset. Instead, we in-
formally describe the possible attack vectors that
we had to take into account when designing our
language. We will return to this topic at the end
of the section.

3.1 Possible Attack Vectors

Source code leak Assume that a secret is
stored as a local variable inside a function:
function(){var secret = "x"; ...}. If the host page
gets a pointer to this function (for instance as
the return value), it can steal the secret by type-
casting the function to string, an operation which
returns the source code of the function.

Call stack leak If an exception flows to the
host page, it can (in some browser) stack infor-
mation including source code fragments that can
potentially contain secrets. Hence, defensive code
that uses exceptions must be enclosed in a global
try block.

Library function replacement Every library
object and function in JavaScript, like encodeUri,
Date or Math can be replaced or removed by the
host page and cannot be used. Only language
constructors and operators are available: defen-
sive code must be fully self-contained.
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Implicit function calls Because of dynamic
typing, there are many operations in JavaScript
that can trigger an implicit type cast with the
potential to implicitely call user-defined func-
tions: if o is an object, o+’’ will implicitely
call the toString method of o. If it is not
defined, the prototype chain is traversed until
one is found. Hence, if the attacker redefines
Object.prototype.toString, it can spy on the
contents of o at the moment of the typecast.

Scoping Because a defensive script is not al-
lowed to access its host heap, it is necessary to
ensure that every variable access is local. This
can be difficult in JavaScript: the with(o) state-
ment adds to the current scope every (possibly
dynamically created) property of o to the scope.
To avoid this problem the use of with is restricted
to objects for which the complete set of properties
is known. Another problem is the this keyword,
whose binding is completely dynamic and can re-
fer to the global scope, to the containing object
of a method, or to the instance of a created ob-
ject. Finally, another feature breaks lexical scop-
ing: functions have access to an arguments prop-
erty which in turns may contain a pointer to a
caller function and its arguments.

Prototype poisoning The 5th revision of the
ECMA 262 standard introduced getters and set-
ters, which are special properties that will call
user specified functions when the property is ac-
cessed for reading or writing. If an attackers sets
a setter using:

Array . prototype . defineSetter ( ’0’ ,
function ( v ) { a l e r t ( ’Got ’+v) ; this [0 ]=v}) ;

and the defensive script tries to initialize the first
element of an initially empty array, it will reveal
the current and all subsequent values of that ele-
ment to the attacker. However, if the array was
initialized with a first element: a = [0], it is safe
to use a [0] because the prototype chain is not tra-
versed if the property exists in the object or ar-

ray. The same issue exists for uninitialized object
properties.
To avoid this attack, every array and object must
be initialized literally, and there must be no access
to undefined properties or array elements using
the bracket operator.

3.2 Syntax Description

〈defensive-program〉 ::= 〈statement〉*

〈statement〉 ::= ε
| ‘with(’ 〈object literal〉 ‘)’ 〈statement〉
| ‘if(’ 〈expression〉 ‘)’ 〈statement〉

(‘else’ 〈statement〉)?
| ‘while(’ 〈expression〉 ‘)’ 〈statement〉
| ‘{’ 〈statement〉* ‘}’
| 〈expression〉
| 〈statement〉‘;’ 〈statement〉

〈expression〉 ::=
| 〈expression〉 @binop 〈expression〉
| @unop 〈expression〉
| 〈lhs expression〉 @assignop 〈expression〉
| 〈expression〉 ‘?’ 〈expression〉 ‘:’ 〈expression〉
| 〈lhs expression〉

〈lhs expression〉 ::=
| @identifier | 〈literal〉
| 〈lhs expression〉 ‘(’ (〈expression〉 ‘,’)* ‘)’
| 〈lhs expression〉 ‘[’ 〈literal〉‘]’
| 〈lhs expression〉 ‘.’ @identifier
| 〈function〉

〈function〉 ::=
| ‘function’ @identifier?

‘(’ (@identifier ‘,’)*‘){’
(‘var’ @identifier (‘=’ 〈expression〉)?)*
〈defensive-program〉
(‘return’ 〈expression〉)? ‘}’

〈object literal〉 ::=
| ‘{’ ( @identifier ‘:’ 〈expression〉 ‘,’)* ‘}’
| ‘[’ (〈expression〉 ‘,’)* ‘]’
| @number | @string | @boolean
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3.3 Type System

Because of the imperative nature of JavaScript,
we opt for a simple monomorphic type system.
For simplicity and familiarity we describe the type
system and inference algorithm in the Hindley–
Milner style, but there is no universal type quan-
tifier or generalization.

〈τ〉 ::= number | boolean | string | undefined
| α, β Type variable
| τ̃ → τ Arrow
| τ̃ [ρ]→ τ Method
| [τ ]n Final Array
| [τ ]>k Array schema
| ρ∗ Final object
| ρ Object schema

〈ρ〉 ::= {l1 : τ1, . . . , ln : τn}

During the inference phase, for instance of
function(x){return x.a+x.b}, the object schema of
x is allowed to be extended to {a : number, b :
number}, whereas {a:0,b:1}.c will cause a unifica-
tion failure because the literal object has a final
type. Objects can also contain methods, which
are functions that can refer to other properties in
the object in which they are defined using this.
The method signature has to match the type of
the object where it is defined, for instance:

{a : function ( ) {return this . b+this . c } , b : 0 ,
c : 1}

We now present the main typing rules:

ArrLit

τ = fresh()
∀1 6 i 6 n,Γ ` ei : τi U(τ, τi)

Γ ` [e1, . . . , en] : [τ ]n

ObjLit

τ = {} ∀1 6 i 6 n,
Γ ` ei : τi U(τ, {li : τi})

if τi = τ̃1[ρ]→ τ2 then U(τ, ρ)

Γ ` {l1 : e1, . . . , ln : en} : τ∗
We also need separate rules for methods and nor-
mal functions to deal with this:

Fun

body = (var y1 = e1, . . . ym = em; s; return r)
λ = fresh() α̃ = fresh()

∀j 6 m,Γ, f : λ, x̃ : α̃, (yi : µi)i<j ` ej : µj
Γ, f : λ, x̃ : α̃, ỹ : µ̃ ` s : undefined; r : τr

U(λ, α̃→ τr)

Γ ` function f(x̃){body} : α̃→ τr

Compared to the function rule, methods have an
additional object schema for this: ρ = {}, and
after f , the binding this : ρ in the typing envi-
ronment. Finally, the resulting type is α̃[ρ]→ τr.
Reading object properties and array elements is
easy:

PropR
τ = fresh() Γ ` e : σ U({l : τ}, σ)

Γ ` e.l : τ

ArrR
τ = fresh() Γ ` e : σ U([τ ]>n+1, σ)

Γ ` e[n] : τ

However, function calls are potentially dangerous
when calling methods outside objects. For this
reason the call method rule, made of the compo-
sition of PropR and Call, is distinct.

Call

τ = fresh() Γ ` e : σ

Γ ` f̃ : α̃ U(α̃→ τ, σ)

Γ ` e(f̃) : τ

MCall

µ = fresh() Γ ` e : σ U({l : µ}, σ)

Γ ` f̃ : α̃ U(α̃[σ]→ τ, µ)

Γ ` e.l(f̃) : τ

Typing of expressions is straightforward, with
monomorphic variants of the polymorphic oper-
ators, like + for the base types. Note that there is
one typecast that is always safe to perform: the
cast to boolean:

BoolCast
Γ ` e : τ

Γ `!e : boolean

Expressions are always typed undefined but they
can require to typecheck an expression:

While
Γ ` e : boolean Γ ` s : undefined

Γ ` while(e)s : undefined
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In its current form, there is a problem with the
with rule. This rule adds an object’s properties to
the typing environment, but some of those prop-
erties may contain methods which no longer can
be called with the call rule. In our implementa-
tion, we added an additional flag to the functions
to lookup and add bindings to the environment to
take this case into account.

With
Γ ` e : {l̃ : τ̃}∗ Γ, l̃ : τ̃ ` s : undefined

Γ ` with(e)s : undefined

The unification algorithm has some special traits
specific to this type system. First of all, it causes
side effects on type variables (as one would ex-
pect), but also on array and object schemas:

U([τ ]n, [σ]m) = [U(τ, σ)]max(n,m)

U({p̃1}, {p̃2}) = {U(p̃1 ∩ p̃2), p̃1∆p̃2}

Furthermore, unifying a final object with an ob-
ject schema consist in making sure the final ob-
ject has all the properties required by the schema
with compatible types. Similarly, unifying a final
array with an array schema means checking that
the types are compatible and that the final array
has at least as many elements as required by the
schema.

3.4 Implementation

The first step of implementing our design was to
write a complete JavaScript parser using Menhir
and ulex. Although such parsers already existed,
notably in js_of_ocaml and the LambdaJS [39]
implementation, they were missing important fea-
tures such as unicode support and automatic
semicolon insertion which prevented them from
accepting real world JavaScript code.
We then implemented the type system using de-
structive type variables for unification. Since the
subset presented above does not have dynamic ar-
ray and object accessors, we extended the syn-
tax to accept some constructions that include dy-

Final type of SHA library object

{HASH: ( string ) [{SECRET: string , STR2BA: ( string )
=> number array [>=50]} ] => string , HASHED
: boolean , LOCATION: string , SECRET: string ,
STR2BA: ( string ) => number array [ 5 0 ] } f i n a l

namic checks to ensure the safety of the property
access:

〈dyn accessor〉 ::=
| (〈x 〉 = @identifier) ‘[’ 〈expression〉

‘&’ @posint ‘%’ 〈x 〉 ‘.length ]’
| @identifier ‘[’ 〈expression〉 ‘&’ @posint ‘]’

the first one ensures that the index to access is a
positive integer between 0 and a.length-1. The
second is especially short and efficient when the
array to access is of length a power of 2.
Associated typing rules are straightforward:

Γ ` x : [τ ]>1 Γ ` e : int n ∈ N∗
Γ ` x[e&n%x.length] : τ

Γ ` x : [τ ]>n Γ ` e : int n ≡ 0[2]

Γ ` x[e&n] : τ

Using these, we were able to implement SHA-
256 and AES-256 CBC, based on code from the
Stanford JavaScript Crypto Library (SJCL). Be-
cause of the literal declaration restriction, they
can only operate on inputs of an arbitrarily cho-
sen length. Cryptographic code is generally easy
to make defensive: every array and object has
to be given a complete initial value, dynamic ar-
ray accessors have to be rewritten to include our
dynamic bound check and some error handling
and input validation code can simply be removed
thank to the type system.
The final type of the SHA and AES library objects
are given below. The SHA function only takes the
first 50 bytes of the input into account, while this
AES implementation works on 3 blocks.

Performance We measured the effect of mak-
ing the SJCL implementation of AES-256 defen-
sive. Given the dynamic checks added for bound
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f o r ( i =0; i < N; i++)
{
a16 = M[ i & N] ;
f o r ( t=0; t < W. length ; t++)
{
W[ t & 256 % W. length ] = t<16
? a16 [ ( t&256)%a16 . l ength ]
: and32 ( sigma1 (
W[ ( t-2)&256 % W. length ]
)
+ W[ ( t-7)&256 % W. length ]
+ sigma0 (W[ ( t-15)&256 % W. length ] )
+ W[ ( t-16)&256 % W. length ] ) )

}

a = H[ 0 ] ; b = H[ 1 ] ; c = H[ 2 ] ; d = H[ 3 ] ;
e = H[ 4 ] ; f = H [ 5 ] ; g = H[ 6 ] ; h = H[ 7 ] ;

f o r ( t=0; t < W. length ; t++)
{
T1 = h + Sigma1 ( e ) + Ch( e , f , g )

+ K[ t&512 % K. l ength ] + W[ t ] ;
T2 = Sigma0 ( a ) + Maj(a , b , c ) ;
h = g ; g = f ; f = e ;

e = and32 (d + T1) ;
d = c ; c = b ; b = a ;
a = and32 (T1 + T2) ;
}

addvm(H, [ a , b , c , d , e , f , g , h ] ) ;
}

Figure 3: Main loop of SHA-256

conditions, one may expect to see a performance
decrease, but there also has been some overhead
reduction due to the removal of the input and
error checks which are now performed statically.
Bencharks were run on a 3Ghz Core i7 PC under
Windows 7. Tested browsers are Chrome 21, Fire-
fox 14, Internet Explorer 9 and Safari 5.1. Result
is the average on 200 runs of the encryption of
20000 blocks, expressed in MB/s.

Browser Chrome Firefox IE Safari

SJCL 8.0 18.6 2.5 9.2
Defensive 16.4 24.0 2.6 9.2

In all cases, the defensive version was at least as

function ( input , d i r )
{

var key = this . key [ d i r & 1 ] ,
a = input [ 0 ] ˆ key [ 0 ] ,
b = input [ ( ! d i r ? 1 : 3) & 3 ] ˆ

key [ 1 ] ,
c = input [ 2 ] ˆ key [ 2 ] ,
d = input [ ( ! d i r ? 3 : 1) & 3 ] ˆ

key [ 3 ] ,
a2 = 0 , b2 = 0 , c2 = 0 , i = 0 ,

kIndex = 4 ,
out = [ 0 , 0 , 0 , 0 ] ,

t ab l e = this . S tab l e s [ d i r & 1 ] ,
t0 = tab l e [ 0 ] , t1 = tab l e [ 1 ] , t2 =

tab l e [ 2 ] ,
t3 = tab l e [ 3 ] , sbox = tab l e [ 4 ] ;

f o r ( i = 0 ; i < 13 ; i++)
{
a2 = t0 [ a>>>24 & 255 ] ˆ t1 [ b>>16 & 255 ]

ˆ t2 [ c>>8 & 255 ] ˆ t3 [ d & 255 ] ˆ
key [ kIndex & 6 3 ] ;

b2 = t0 [ b>>>24 & 255 ] ˆ t1 [ c>>16 & 255 ]
ˆ t2 [ d>>8 & 255 ] ˆ t3 [ a & 255 ] ˆ

key [ ( kIndex + 1) & 6 3 ] ;
c2 = t0 [ c>>>24 & 255 ] ˆ t1 [ d>>16 & 255 ]

ˆ t2 [ a>>8 & 255 ] ˆ t3 [ b & 255 ] ˆ
key [ ( kIndex + 2) & 6 3 ] ;

d = t0 [ d>>>24 & 255 ] ˆ t1 [ a>>16 & 255 ]
ˆ t2 [ b>>8 & 255 ] ˆ t3 [ c & 255 ] ˆ

key [ ( kIndex + 3) & 6 3 ] ;
kIndex += 4 ; a = a2 ; b = b2 ; c = c2 ;
}

f o r ( i = 0 ; i < 4 ; i++)
{
out [ ( ! d i r ? i : (3& i ) ) & 3 ] =
sbox [ a>>>24 & 255]<<24 ˆ
sbox [ b>>16 & 255]<<16 ˆ
sbox [ c>>8 & 255]<<8 ˆ
sbox [ d & 255 ] ˆ
key [ kIndex++ & 6 3 ] ;
a2=a ; a=b ; b=c ; c=d ; d=a2 ;
}

return out ;
}

Figure 4: Main function and final type of AES-256

fast as the SJCL one with gains of up to 100%
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Final type of AES library object

{ASCII : string , STR2WA: ( string ) [{ASCII : string } ]
=> number array [ 4 ] array [ 3 ] , S tab l e s :

number array [ 2 5 6 ] array [ 5 ] array [ 2 ] , cbc : (
number array [>=4] array [>=0] , number array
[>=4] , boolean ) [{ crypt : (number array [ 4 ] ,
number) => number array [>=4]} ] =>
undef ined , crypt : (number array [>=4] ,
number) [{ Stab l e s :number array [>=256] array
[>=5] array [>=2] , key :number array [>=64]
array [>=2]} ] => number array [ 4 ] , key :
number array [ 6 4 ] array [ 2 ] , setKey : (number
array [>=8]) [{ Stab l e s :number array [>=256]
array [>=5] array [>=2] , key :number array
[>=64] array [>=2]} ] => undef ined } f i n a l

on Chrome and 30% on Firefox. The removal of
the exception handler for malformed input is the
main speedup factor, while on Firefox, the JIT
compiler is able to generate more efficient code
paths from the defensive code.

Applications We can then use these primi-
tives to build protocols that can run in un-
trusted JavaScript heaps. Going back to the Last-
Pass bookmarklet example, we can use a sim-
ple challenge-handshake authentication protocol
based on SHA-256 to protect the bookmarklet’s
secret. In its simplest form, the bookmarklet can
create an iframe in the LastPass origin that will
authenticate the bookmarklet using the CHAP
protocol and decrypt the page’s password on suc-
cess.

3.5 Related Work

Most existing research on web security rely on the
hypothesis that the trusted code is running first.
Some do use type systems, for instance for the
verification of ADsafety sandboxing properties [8].
Our work show that it is also possible to consider
trused code being injected into an untrusted page
without leaking any secret to it. However, what
we were lacking is a complete operational seman-
tics of JavaScript that would allow us to prove
a formal security property. In that regard, there

has been significant progress from the F* team at
Microsoft Research, which we met in Seattle, us-
ing a very simple semantic of the core features of
JavaScript called λJS [39].
Using an encoding of the various JavaScript fea-
tures into that core, they are able to give a for-
mal semantic of ECMA 5 and use the refine-
ment type system of F* to compile ML code into
JavaScript and prove a full abstraction theorem
for this transformation [40], i.e. that contextual
semantic equivalence is preserved by this transfor-
mation, which was our initial security goal as well
for defensive Javascript. Still, their approach has
drawbacks: it relies on a two part process starting
from a syntactic conversion of ML into Javascript
followed by a complex stage of wrapping the re-
sulting objects in a defensive way. This requires
significant code rewrite in a language web devel-
opers may not be familiar with and adds signifi-
cant overhead to the generated code.
Yet it seems that the method of their proof can be
used to obtain the security theorem we are miss-
ing, more specifically we can try to use their en-
riched λJS semantics (called JS*) as our target
intermediate language.

4 Conclusion and perspectives

In the course of this intership, we have addressed
the problem of code running second in an un-
trusted scope. We have designed and imple-
mented a defensive subset of JavaScript with re-
gard to a malicius execution environment and a
program able to check the membership to that
subset of any input JavaScript program. We have
also implemented a lightweight cryptographic li-
brary allowing us to have authenticated and en-
crypted communication across an unsafe host.
Nevertheless, we are missing a formal soundness
proof of our defensiveness claim. Additionally,
we have to acknowledge that our current tool,
while sufficient for our goals, has a limited ex-
pressive power due to its basic type system and
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in particular refinement types associated with an
SMT solver would have allowed us to automati-
cally check almost all bound conditions without
resorting to dynamic checks. Lastly, we are aware
that the defensive subset we presented is far from
being maximal. In particular, it is possible to have
defensive constructors with one level of prototype
inheritence and using computational security, to
allocate arbitratily large new arrays and objects.
In any case, this line of research will be prolonged
into a PhD thesis.
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