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Internship description and acknowledgements

This report presents the results of a 10-week internship of the author at the Computer
Science department of Boston College. Despite the small size of the department with
less than a dozen permanent members, most of them working on subjects outside
the theory of computation, the quality of reception was more worthy of an invited
professor than of a mere first-year graduate student. In particular, working conditions
were definitely a step up from what is usually offered in French institutions, especially
to gratuate and doctoral students. However, working conditions would have meant
nothing if not for the great availability of my advisor and his willingness to involve me
in his research. For this I wish to thank Howard Straubing for making this internship
a fruitful experience.

1 Introduction to forest algebras

It is well known from two celebrated results by Schützenberger and McNaughton that
star-freeness, aperiodicity and first-order definability (with an order predicate on posi-
tions and letter-testing predicates) are equivalent notions for regular word languages.
This theorem laid the foundation for the algebraic theory of regular languages. Many
characterizations of regular language classes by algebraic (e.g. equations defining a
pseudo-variety) or logical descriptions have been obtained using techniques and re-
sults from semigroup theory.

The goal of forest algebras is to provide a similarly universal algebraic framework to
study regular tree languages. This introduction is a summary of a paper by Bojańczyk
and Walukiewicz [1]; most proofs are omitted and can be found in their article. By
forest, we mean an ordered collection of unranked ordered trees. We denote by T (A)
and F(A) respectively the set of unranked ordered trees and forests over the alphabet
A. There are two natural operations on forests: concatenation, which we denote +,
although it is not necessarily commutative, consists of putting one forest after the
other; while rooting, which we denote ·, is a left action of the alphabet A on F(A).
If t ∈ F(A) and a ∈ A, a · t denotes the tree with root a and t as the subforest of
descendants of a.
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(a) A forest t1

c

c

a

(b) A forest t2

b

a c

c

c

a

(c) The forest t1 + t2

Figure 1: Concatenation of forests

The empty forest is denoted 0, with the convention that a · 0 = a for all a ∈ A;
it is clear that (F(A), 0,+) is a monoid. We can define the syntax of forests as
t ::= 0 | t+ t | a · t, a ∈ A. This formalism is well-suited to build automata on forests
(it corresponds to a bottom-up pass). However, rooting is too limited an operation
for our algebraic approach. To understand this, consider the syntactic congruence on
words: w ≡L w′ means that in any word x we can replace the subword w with w′ (or w′

with w) without changing the membership of x in L. As for forests, we cannot easily
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Figure 2: The rooting a · (t1 + t2)

describe what it means to replace a subforest with another one in terms of rooting.
For this purpose, we need to introduce contexts.

A context over an alphabet A is a forest over A ] {∗} where ∗ appears in exactly one
leaf which we call the hole. We denote by C(A) the set of contexts over A and 1 the
context with a single leaf labelled ∗. If p, q ∈ C(A), we define p ◦ q as the context
obtained by replacing the hole in p by q; (C(A), 1, ◦) is then a monoid.

If p ∈ C(A) and t ∈ F(A), we can define p·t as the forest obtained by replacing the hole
in p by t. This is a monoidal action of C(A) on F(A): if q ∈ C(A), (p ◦ q) · t = p · (q · t).

b

a ∗ c

b a

(a) A context p

c

∗

c

(b) A context q

b

a c

∗

c c

b a

(c) The context p ◦ q

Figure 3: Composition of contexts

Definition 1. A forest algebra is a tuple (H,V, ·, inL, inR) where:

1. H is the horizontal monoid denoted (H, 0,+).

2. V is the vertical monoid denoted (V, 1, ◦).
3. · is a left monoidal action of V on H.

4. inL, inR : H → V are such that inL(g) · h = g + h and inR(g) · h = h + g for all
g, h ∈ H.

5. The action · is faithful, i.e. for every two distinct v, w ∈ V , there exists some
h ∈ H such that v · h 6= w · h.

Remark 1. Despite the additive notation, we do not require (H,+) to be commuta-
tive. Having H commutative corresponds to the case of unordered unranked forests.
This case leads to major simplifications, some of which can be explained by the next
remark.

Remark 2. Because of the insertion functions, the horizontal monoid is contained in
the vertical monoid: for all h ∈ H, we have inL(h) · 0 = h + 0 = h, i.e. any element
from H is of the form v · 0 with v ∈ V . Furthermore, insertion functions are injective
monoid morphisms.
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Remark 3. The faithfulness condition cannot be described equationally because of
the existential quantifier, and it is not preserved by homomorphic image. However, if
(H,V ) satisfies all the axioms of a forest algebra but faithfulness, it can be transformed
into a forest algebra (H,V/∼V ) where

v1 ∼V v2 if and only if ∀h ∈ H, v1 · h = v2 · h

Remark 4. Because · is a monoidal action, we will often omit ◦ and · and write vwh
instead of (v ◦ w) · h = v · (w · h).

A morphism between two forest algebras (H,V ) and (G,W ) is a pair of monoid mor-
phisms (α : H → G, β : V →W ) that preserves the action and insertion functions. In
fact, if α is surjective, the condition on the action is sufficient:

∀h ∈ H, v ∈ V, α(vh) = β(v)α(h)

As it implies that for all h, h′ ∈ H and g ∈ Im(α) = G:

β(inL(h))α(h′) = α(inL(h)h′)

= α(h+ h′)

β(inL(h))g = α(h) + g

= inL(α(h))g

β(inL(h)) = inL(α(h))

The last equality is derived from the previous one using the faithfulness condition.
Notice that we used the same notation for the insertion functions and operations of
each forest algebra. A similar argument yields β(inR(h)) = inR(α(h)).

Remark 5. The morphism α is determined by β via

α(h) = α(h+ 0) = α(inL(h)0) = β(inL(h))0G

Definition 2. The free forest algebra over A, denoted A∆, is the forest algebra defined
by:

– The horizontal monoid is (F(A), 0,+).

– The vertical monoid is (C(A), 1, ◦).
– The action is substitution of forests in contexts.

– The inL (respectively inR) function transforms a forest into a context by adding
a hole to the right (resp. left) of all the roots of the forest.

It is clear A∆ is a forest algebra, while the following lemma shows that it is indeed a
free algebraic structure:

Lemma 1. For all forest algebras (H,V ), any function f : A → V can be uniquely
extended to a morphism (α, β) : A∆ → (H,V ) such that β(a(∗)) = f(a) for every
a ∈ A.

The proof of this lemma relies on the fact that the context monoid is generated by
rootings a(∗) and insertions inL(t), inR(t), which are fixed by the axioms. Given a
forest algebra (H,V ), we will define a morphism (α, β) : A∆ → (H,V ) by the action
of β on a(∗) or, by an abuse of notation, by giving β(a).
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Definition 3. A set L of A-forests is said to be recognized by a forest algebra mor-
phism (α, β) : A∆ → (H,V ) if there exists some F ⊆ H such that L = α−1(F ). The
morphism (α, β) is said to recognize L and F is called the accepting set. We also
say that L is recognized by (H,V ). In the case when (H,V ) is finite, we say that L is
recognizable.

Definition 4. Let L be a forest language over A. The horizontal syntactic equiv-
alence relative to L is defined as follows: we say that two forests t1, t2 ∈ F(A) are
L-equivalent, which we denote t1 ≡L t2, if ∀p ∈ C(A), pt1 ∈ L⇔ pt2 ∈ L.

It can be easily verified that the horizontal syntactic equivalence is a congruence with
respect to concatenation and substitution of forests. Hence, the action of contexts
on ≡L-classes is well-defined. We can then use the method in remark 3 to make this
action faithful:

Definition 5. The vertical syntactic equivalence relative to L is defined as follows:
we say that two contexts p1, p2 ∈ C(A) are L-equivalent, which we denote p1 ≡L p2, if
∀t ∈ F(A), p1t ∈ L⇔ p2t ∈ L.

Definition 6. The syntactic forest algebra of L ⊆ F(A) is the quotient of A∆ by the
syntactic congruences. Namely, it is the forest algebra (HL, V L) with HL = F(A)/≡L
and V L = C(A)/≡L. The canonical projection of this quotient (αL, βL) is called the
syntactic morphism.

The next proposition justifies that this construction has the expected minimality prop-
erty of syntactic objects:

Proposition 1. The syntactic morphism of a forest language L recognizes L. More-
over, any morphism (α, β) : A∆ → (H,V ) that recognizes L can be extended by a
morphism (α′, β′) : (H,V )→ (HL, V L) such that β′ ◦ β = βL.

Remark 6. One may wonder what is the benefit of considering forests instead of
trees. Indeed, it is possible to define tree algebras. In this case, the horizontal monoid
is still the forest monoid, while contexts are trees with one hole at a leaf (the insertion
functions are modified accordingly). The action of a context on a forest is then a tree,
and a tree language is recognizable if is is recognized by a tree algebra morphism.

In this context, proposition 1 does not hold: there exist languages with two minimal
recognizing tree algebras. One such example is the language of trees where only the
root can have more than one child. There are syntactic classes for the empty forest,
forests with one path, forests which are a concatenation of paths, and a class for
everything else. If we denoteH = {0, 1, 2,⊥} the honrizontal monoid, then bothH∪{i}
and H ∪ {f} with i+ i = i and f + f = ⊥ recognize L but have no common quotient
recognizing L. The same issue arises if we say that a tree language is recognizable if
it is the intersection of a recognizable forest language with the set of trees.

2 Automata over forests

In this section, we present two equivalent models for automata over forests. The first
one is very algebraic and closely related to forest algebras while the second one is more
suitable for practical purposes.
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2.1 Forest automata

Definition 7. A forest automaton is a tuple A = 〈(Q, 0,+), A, δ : A×Q→ A,F ⊆ Q〉,
where (Q, 0,+) is the finite state monoid, δ is the transition function of the automaton.

A forest automaton defines a map from F(A) to Q. This map, written ·A, is defined
by induction on the structure of forests:

– 0A = 0.

– (t1 + t2)A = tA1 + tA2 .

– (a · t)A = δ(a, tA).

The language accepted by A is L(A) = {t ∈ F(A) | tA ∈ F}.
Proposition 2. A forest language is recognizable if and only if it is accepted by some
forest automaton.

Proof: If a forest automaton A = 〈(Q, 0,+), A, δ : A×Q→ Q,F ⊆ Q〉 accepts L, we
define a forest algebra (H,V ) as follows:

– The horizontal monoid H is (Q, 0,+).

– The vertical monoid V is (HH , idH , ◦) the monoid of functions from H to H.

– The action is function application: v · h = v(h).

– The insertion functions are uniquely defined by the action.

It is clear that this defines a forest algebra. We now define a morphism (α, β) : A∆ →
(H,L) by β(a) = δ(a) ∈ HH . One can verify by induction that tA = α(t).

Conversely, if L is recognized by some morphism (α, β) : A∆ → (H,V ), i.e. L =
α−1(F ) for some F ⊆ H, let A = 〈H,A, δ : A ×H → H,F ⊆ H〉 where δ is defined
by:

δ(a, h) = β(a) · h
such that tA = α(t). It follows that L(A) = L is regular. ♦

2.2 Bottom-up deterministic forest automata

Definition 8. A bottom-up deterministic forest automaton (BUDFA) is a tuple:

A = 〈S,Q, s0 ∈ S, γ : S ×Q→ S, λ : S ×A→ Q,F ⊆ S〉

S is the finite set of horizontal states, s0 is the initial state, F is the subset of ac-
cepting states, Q is the finite set of vertical states. γ is a semiautomaton, its set of
states is S and its alphabet is Q. γ defines a left monoidal action of Q∗ on S; we will
often write s · q1 . . . qn instead of γ(γ(· · · γ(s, q1) · · · ), qn−1), qn).

A BUDFA A defines a map from F(A) to S. This map, written ·A, is defined by
induction on the structure of forests:

– 0A = s0.

– (t1 + a · t2)A = tA1 · λ(tA2 , a).

It is possible to draw a BUDFA as follows: we start by drawing the horizontal au-
tomaton (S,Q, s0, γ, F ), each state s is then tagged with a sequence a1 : q1, . . . , an : qn
such that for all 1 6 i 6 n, λ(s, ai) = qi.
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b

a a c

a

s0

s0 s0 s0

q1 = λ(s0, a)

q4 = λ(s1, b)

q2 q3

q5 = λ(s0, a)

s1 = s0 · q1q2q3

tA = s0 · q4q5

Figure 4: Evaluation of tA

Example 1. Let L1 be the language of forests over {a, b} in which any path contains
at most one node labelled a. The BUDFA in figure 5 accepts L1; figure 6 shows and
accepting run of the automaton.

s0

sf

s1

qb

qa

qf

qa, qb

qf

qa, qb, qf

a : qf
b : qf

a : qf
b : qa

a : qa
b : qb

Figure 5: A BUDFA accepting L1

Example 2. Let L2 be the language of binary trees in which any maximal path has
even length. The BUDFA in figure 7 accepts L2.

A forest automaton

A = 〈(Q, 0,+), A, δ : A×Q→ Q,F ⊆ Q〉

can be easily transformed into a BUDFA

A′ = 〈Q,Q, 0, γ : Q×Q→ Q,λ : Q×A→ Q,F ⊆ Q〉

by taking γ(q1, q2) = q1 + q2 and λ(q, a) = δ(a, q), so that tA = tA
′

for any forest t.

Conversely, it is possible to transform a BUDFA

A = 〈S,Q, s0, γ, λ, F 〉

into a forest automaton. For q ∈ Q, let γq : s 7→ γ(s, q); γq ∈ SS . Let

T = {γq | q ∈ Q} ⊆ SS

6



b

b

a b

a

b

b

a

s0 s0

s0 s0

s0

qa qb

s1

qa qa

s1

qa

qb

s0

qb qa

s0 · qaqbqa = s1 ∈ F

Figure 6: An accepting run of the automaton

l0 f

i

l1

p1 p0

q0 q1qf

q1, qf

q0

q0, qf

q0

q0, q1, qf

x : q0

x : qf x : qf

x : q0x : q1

x : qf

Figure 7: A BUDFA accepting L2

We denote by ∗ the reverse composition of functions, i.e. if f, g ∈ SS , f ∗ g = g ◦ f .
H = (〈T 〉, idS , ∗) denotes the submonoid of (SS , idS , ∗) generated by T . We now define
the forest automaton

A′ = 〈H,A, δ : A×H → H,F ′〉
where F ′ = {f ∈ H|f(s0) ∈ F} and δ(a, f) = γλ(f(s0),a).

We show by induction on t that tA ∈ F if and only if tA
′ ∈ F ′:

– If t = 0: 0A ∈ F ⇔ s0 ∈ F ⇔ idS(s0) ∈ F ⇔ idS ∈ F ′ ⇔ 0A
′ ∈ F ′.

– If t = t1 + a · t2:

(t1 + a · t2)A = γ(tA1 , λ(tA2 , a))

(t1 + a · t2)A
′

= tA
′

1 ∗ δ(a, tA
′

2 )

= tA
′

1 ∗ γλ(tA
′

2 ,a)

= s 7→ γ(tA
′

1 (s), λ(tA
′

2 , a))

The same construction can be used to transform a BUDFA into a forest algebra rec-
ognizing the same language: let H be the transition monoid of the horizontal DFA of
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A (as defined above). If w = q1 . . . qk ∈ Q∗, we define γw = γq1 ∗ · · · ∗γqk , in particular
H is (〈γw | w ∈ Q∗〉, idS , ∗).
Let V be the submonoid of (HH , idH , ◦) generated by:

H −→ H

va : h 7−→ γλ(h(s0),a)

vinL(t) : h 7−→ γt ∗ h
vinR(t) : h 7−→ h ∗ γt

for all a ∈ A, t ∈ F(A). The action is v · h = v(h).

(H,V ) is called the transition forest algebra of A. It is the forest algebra associated
with the forest automaton built from A as above, hence it recognizes the language
accepted by A.

2.3 Minimization of BUDFA

Let L be a recognizable forest language. Recall that the syntactic congruence ≡L is
then of finite index, since the syntactic forest algebra recognizes L.

A left-context is a context in which the hole has no sibling on its left. The set of
left-contexts is denoted C`(A). We define the equivalence relation on F(A): t1 ∼L t2
if and only if for every left-context p ∈ C`(A), p · t1 ∈ L⇔ p · t2 ∈ L.

It is clear that ≡L⊆∼L, i.e. that ∼L is coarser than ≡L, and consequently it is of
finite index.

We can restrict the syntactic congruence of forests to the set of trees. This equivalence
relation on T (A) is still denoted ≡L.

The minimal automaton of L is then defined as follows:

AL = 〈F(A)/∼L, T (A)/≡L, [0]∼L
, γ, λ, [L]∼L

〉

where λ([t]∼L
, a) = [at]≡L

and γ([t1]∼L
, [t2]≡L

) = [t1 + t2]∼L
.

This automaton is well-defined because:

– t1 ∼L t2 implies at1 ≡L at2: if p ∈ C(A), then p ◦ (a(∗)) ∈ C`(A).

– t1 ∼L t′1 and t2 ≡L t′2 implies t1 + t2 ∼L t′1 + t′2: for all p ∈ C`(A), since
p ◦ inR(t2) ∈ C`(A):

(p ◦ inR(t2)) · t1 ∈ L ⇔ (p ◦ inR(t2)) · t′1 ∈ L
p · (t1 + t2) ∈ L ⇔ p · (t′1 + t2) ∈ L

(p ◦ inL(t1)) · t2 ∈ L ⇔ (p ◦ inL(t′1)) · t′2 ∈ L
p · (t1 + t2) ∈ L ⇔ p · (t′1 + t′2) ∈ L

The first step of minimization is to trim the automaton of its non-reachable states.
The following algorithm, inspired by [2], can be used to compute the reachable states
of a BUDFA A: we maintain two subsets S′ ⊆ S and Q′ ⊆ Q of reachable states.
They are initialized to S′ = {s0} and Q′ = {λ(s0, a) | a ∈ A}. A breadth-first search
is performed in the horizontal DFA of A starting from s0 using transitions in Q′.
Whenever a new state s ∈ S is reached, it is added to S′ and all the q1, . . . , qp that
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appear in the tag a1 : q1, . . . , ap : qp of s are added to Q′. Then, any previously ignored
transition labelled with some qi during the BFS is explored.

To measure the complexity of algorithms on BUDFA, we define the size of a BUDFA
to be the size of the horizontal transition table, i.e. |S| · |Q|. The size of the output
function is not relevant because there are at least as many vertical states as letters in
the alphabet in a useful automaton. The trimming algorithm is then linear because
each transition is explored at most once.

Let A = 〈S,Q, s0, γ, λ, F 〉 be a trimmed BUDFA that recognizes L. We can build a
morphism of BUDFA from A to AL as follows: for s ∈ S, q ∈ Q let

Ts = {t ∈ F(A) | tA = s} ⊆ F(A)

Tq = {at ∈ F(A) | λ(tA, a) = q} ⊆ T (A)

The core of the proof of minimality of AL is contained in the following lemma:

Lemma 2. Let s ∈ S, q ∈ Q.

1. If ts, t
′
s ∈ Ts then ts ∼L t′s.

2. If tq, t
′
q ∈ Tq then tq ≡L t′q.

Proof: Let ts, t
′
s ∈ Ts, tq, t′q ∈ Tq, p ∈ C`(A), r ∈ C(A).

1. When A reads p · ts or p · t′s, since the hole has no left sibling, the horizontal
DFA reaches the state s after reading ts or t′s; hence (p · ts)A = (p · t′s)A.

2. When A reads r · tq or r · t′q, the horizontal DFA ends up in the same state if the
hole was replaced by tq or t′q since both are labelled by the same q. ♦

Because of this lemma, the map s 7→ [Ts]∼L
, q 7→ [Tq]≡L

defines a surjective morphism
from A to AL: s0 is mapped to [0]∼L

and F is mapped to [L]≡L
.

Moreover, the following equivalence relations on S and Q:

s ∼A s′ if and only if [Ts]∼L
= [Ts′ ]∼L

q ∼A q′ if and only if [Tq]≡L
= [Tq′ ]≡L

can be used to minimize any trimmed BUDFA A recognizing L; A/∼A is then iso-
morphic to AL.

Proposition 3. Algorithm 1 computes the relation ∼A given a trimmed BUDFA A.

Proof: Let us define the relation ∼i by:

∼i = {(s1, s2) ∈ S2 | {s1, s2} is not marked after i steps of the loop on line 3}
] {(q1, q2) ∈ Q2 | {q1, q2} is not marked after i steps of the loop on line 3}

Clearly, any pair marked by the algorithm is not equivalent for ∼A, i.e. ∼A⊆∼i. We
define two families of contexts by induction:

C0
s = C0

q = {∗}
Ci+1
s = Cis ∪ {p ◦ inR(t) | p ∈ Cis, t ∈ T (A)} ∪ {p ◦ a(∗) | p ∈ Ciq, a ∈ A}
Ci+1
q = Ciq ∪ {p ◦ inL(t) | p ∈ Cis, t ∈ F(A)}

9



Algorithm 1 Computation of ∼A
1: Mark all pairs {s1, s2} ∈ S2 such that s1 ∈ F and s2 6∈ F .
2: Mark all pairs {q1, q2} ∈ Q2 such that γ(s0, q1) ∈ F and γ(s0, q2) 6∈ F .
3: repeat
4: for all a ∈ A do
5: for all unmarked {s1, s2} ⊆ S do
6: Mark {s1, s2} if {λ(s1, a), λ(s2, a)} is marked
7: end for
8: end for
9: for all q ∈ Q do

10: for all unmarked {s1, s2} ⊆ S do
11: Mark {s1, s2} if {γ(s1, q), γ(s2, q)} is marked
12: end for
13: end for
14: for all s ∈ S do
15: for all unmarked {q1, q2} ⊆ Q do
16: Mark {q1, q2} if {γ(s, q1), γ(s, q2)} is marked
17: end for
18: end for
19: until No new pair is marked
20: return {(s1, s2) ∈ S2 | {s1, s2} is not marked}]

{(q1, q2) ∈ Q2 | {q1, q2} is not marked}

Notice that all contexts in Cis are left contexts. We also define:

s ∼iA s′ if and only if ∀p ∈ Cis, p · ts ∈ L⇔ p · ts′ ∈ L
q ∼iA q′ if and only if ∀p ∈ Ciq, p · tq ∈ L⇔ p · tq′ ∈ L

In the above definition, ts and tq denote any element of respectively Ts and Tq. We
show by induction on i ∈ N that ∼i⊆∼iA.

– Assume s ∼0 s′, i.e. s ∈ F ⇔ s′ ∈ F . Then ts ∈ L⇔ ts′ ∈ L, which is equivalent
to s ∼0

A s
′ since C0

s = {∗}. Similarly, if q ∼0 q′, i.e. γ(s0, q) ∈ F ⇔ γ(s0, q
′) ∈ F ,

then tq ∈ L⇔ tq′ ∈ L, which is equivalent to q ∼0
A q
′ since C0

q = {∗}
– Let i ∈ N, assume that ∼i⊆∼iA and s 6∼iA s′. There exists some p ∈ Ci+1

s such
that for instance p · ts ∈ L and p · ts′ 6∈ L.

– If p ∈ Cis then s 6∼i s′: {s, s′} was marked at step i hence s 6∼i+1 s′.

– If p = p′ ◦ a(∗) with p′ ∈ Ciq then p′ ◦ tλ(s,a) ∈ L and p′ ◦ tλ(s′,a) 6∈ L. But
then, the pair {s, s′} is marked at step i+1 of the algorithm because of line
6, hence s 6∼i+1 s′.

– If p = p′ ◦ inR(tq) with p′ ∈ Cis and tq ∈ Tq then p′ ◦ tγ(s,q) ∈ L and
p′ ◦ tγ(s′,q) 6∈ L. But then, the pair {s, s′} is marked at step i + 1 of the
algorithm because of line 11, hence s 6∼i+1 s′.

The other implication q 6∼i+1
A q′ ⇒ q 6∼i+1 q′ is similar. It follows that

∼i+1⊆∼i+1
A .

It remains to show that there exists some i such that ∼iA=∼A. If p is a context, |p|∗
denotes the depth of the hole in p (starting from 0 if the hole is a root) and ∇p denotes
the maximum number of siblings in p. If p · ts ∈ L⇔ p · ts′ ∈ L holds for all contexts p
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such that ∇p 6 |S| and |p|∗ 6 |Q|, it also holds for all contexts. If i is sufficiently large,
Cis and Ciq contain all contexts such that ∇p 6 |S| and |p|∗ 6 |Q|, hence ∼iA=∼A. This
also shows that the loop on line 3 is run at most max(|S|, |Q|) times. ♦

1

a :  1

b :  2

3

3

a :  4

b :  1

1

2

a :  1

b :  3

2 4

a :  4

b :  4
4

1 ,2 ,3

4

3

1

2

4

1 ,2 ,3 ,4

Figure 8: A non minimal BUDFA

Example 3. The automaton in figure 8 recognizes forests over {a, b} in which no pair
of nodes labelled by a are in a same path. The following table shows the relation ∼i
at each step of the algorithm:

S Q

∼0 1 2 3 4 1 2 3 4

∼1 1 2 3 4 1 2 3 4

∼A 1 2 3 4 1 2 3 4

At step 1, the S-pairs {1, 3} and {2, 3} are marked because λ(1, a) = λ(2, a) = 1,
λ(3, a) = 4 and the Q-pair {1, 4} is marked. Then, the Q-pairs {1, 2} and {1, 3} are
marked because γ(1, 1) = 3, γ(1, 3) = 1 and the S-pair {1, 3} is marked; γ(2, 1) = 3,
γ(2, 2) = 2 and the S-pair {2, 3} is marked. No other pair is marked at the next step,
hence only S-states 1 and 2 and Q-states 2 and 3 are equivalent.

Algorithm 2 Computing ∼A by refinement

1: Rs := {F, F c}, Rq := {Q}
2: repeat
3: Rs := R′s, Rq := R′q
4: Define R′s by sR′ss′ if sRss′ and
5: For all q ∈ Q, a ∈ A, λ(s, a)Rqλ(s′, a) and γ(s, q)Rsγ(s′, q)
6: Define R′q by qR′qq′ if qRqq′ and
7: For all s ∈ S, γ(s, q)Rsγ(s, q′)
8: until R′s = Rs and R′q = Rq
9: return Rs, Rq

Although algorithm 1 is easy to prove and well-suited for minimization by hand, it
is much too slow. By splitting classes instead of marking pairs, it is easy to build
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an equivalent algorithm that runs in quadratic time. This variant is presented in
algorithm 2; it is clear that sR′ss′ at step i of algorithm 2 if and only if the pair {s, s′}
was not marked at step i of algorithm 1. Quadratic complexity can be achieved by
using a data structure such that splitting a Rs-class B can be done in O((|A|+|Q|)|B|)
and splitting a Rq-class C can be done in O(|S||C|). Implementation details can be
found in papers focusing on the word case, e.g. [3].

Algorithm 3 Generalized Hopcroft minimization

1: LS := ∅, LQ := ∅
2: PS := {F, F c}, PQ := {Q}
3: ADD(LS,min(F, F c))
4: while LS 6= ∅ or LQ 6= ∅ do
5: if LQ = ∅ then
6: C := EXTRACT (LS)
7: for all B ∈ PS do
8: for all q ∈ Q do
9: D := γ−1

q (C) =
⋃
s′∈C{s ∈ S | γ(s, q) = s′}

10: C0 := B ∩D; C1 := B ∩Dc

11: if min(C0, C1) 6= ∅ then
12: REPLACE(PS,B,max(C0, C1))
13: ADD(PS,min(C0, C1)); ADD(LS,min(C0, C1))
14: end if
15: end for
16: end for
17: for all B ∈ PQ do
18: for all s ∈ S do
19: D := γ−1

s (C) =
⋃
s′∈C{q ∈ Q | γ(s, q) = s′}

20: C0 := B ∩D; C1 := B ∩Dc

21: if min(C0, C1) 6= ∅ then
22: REPLACE(PQ,B,max(C0, C1))
23: ADD(PQ,min(C0, C1)); ADD(LQ,min(C0, C1))
24: end if
25: end for
26: end for
27: else
28: C := EXTRACT (LQ)
29: for all B ∈ PS do
30: for all a ∈ A do
31: D := λ−1

a (C) =
⋃
q∈C{s ∈ S | λ(s, a) = q}

32: C0 := B ∩D; C1 := B ∩Dc

33: if min(C0, C1) 6= ∅ then
34: REPLACE(PS,B,max(C0, C1))
35: ADD(PS,min(C0, C1)); ADD(LS,min(C0, C1))
36: end if
37: end for
38: end for
39: end if
40: end while
41: return PS, QS

12



Proposition 4. Given a trimmed BUDFA A, algorithm 3 computes the relation ∼A
and can be implemented to run in O (|A| log |A|) time.

Proof: We first show the algorithm is correct. Notice that in algorithm 1, ∼i 6=∼i+1

if and only if at least one of the following statement is true:

1. ∃B,C ∈ S/∼i,∃q ∈ Q, γ(B, q) ∩ C 6= ∅ and γ(B, q) 6⊆ C;

2. ∃B ∈ Q/∼i∃C ∈ S/∼i,∃s ∈ S, γ(s,B) ∩ C 6= ∅ and γ(s,B) 6⊆ C;

3. ∃B ∈ S/∼i∃C ∈ Q/∼i,∃a ∈ A, λ(B, a) ∩ C 6= ∅ and λ(B, a) 6⊆ C.

We say that (C, q), (C, s) and (C, a) are splitters for the conditions 1,2 and 3. We also
define the refinements w.r.t. a splitter set for each condition:

– If B, (C, q) satisfy 1, let B(C,q) = B ∩ γ−1
q (C) and B(C,q) = B \B(C,q)

– If B, (C, s) satisfy 2, let B(C,s) = B ∩ γ−1
s (C) and B(C,s) = B \B(C,s)

– If B, (C, a) satisfy 3, let B(C,a) = B ∩ λ−1
a (C) and B(C,a) = B \B(C,a)

We also use the notation B′ and B′′ for the refinements of B if there is no ambiguity
on the splitter. If B is a class of horizontal states of ∼ a partition of S and Q, we
denote spl(B,∼) the set of splitters of B in ∼, i.e. the set of all splitters (C, s) and
(C, a) such that 1 or 3 holds. Similarly, if B is a class of vertical states spl(B,∼) is the
set of splitters (C, q) such that 2 holds. The repeat loop of algorithm 2 can be restated
as follows: for each class B of Rs and Rq and for all splitter (C, x) ∈ spl(B,Rs ∪Rq),
split B into B(C,x) and B(C,x).

In algorithm 3, we use a dual approach focusing on the splitters. Like in
[3], we define objects of refinement in ∼ by obj(C, x,∼) = {B ∈∼| (C, x) ∈
spl(B,∼)}. Because of the above remark, the following algorithm computes
∼A:

1: ∼:= {F, F c} ] {Q}
2: while ∃(C, x) with C ∈∼ and x ∈ S ]Q ]A such that obj(C, x,∼) 6= ∅ do
3: for all B ∈ obj(C, x,∼) do
4: Replace B with B(C,x) and B(C,x) in ∼
5: end for
6: end while

This is in substance algorithm 3, except for how we look for splitters (C, x) such that
obj(C, x,∼) 6= ∅. Notice that if we refine a class B into B(C,x) and B(C,x), then for all

D ⊆ B(C,x) or D ⊆ B(C,x), D 6∈ obj(C, x,∼). In other words, once a splitter is used to
refine a class, it is not a splitter of any subset of the refined class. Furthermore, the
sets of splitters {(B, x), (B′, x)}, {(B, x), (B′′, x)} and {(B′, x), (B′′, x)} all lead to the
same refinement of ∼. We can then use a set L of candidate splitters. A candidate
splitter can only be added once to L, and if it splits a class B, then it suffices to add
one of (B′, x) or (B′′, x) to L. To minimize the number of candidate splitters to test
we always chose to add the smallest possible candidate.

In algorithm 3, instead of using splitters (C, x), we only add the set C to the waiting
set and we test all possible (C, x) when processing C. This does not change the
complexity in the worst case, and the algorithm becomes more concise. Otherwise,
this is exactly what we described above, but with proper distinction of the 3 different
kinds of splitters. This concludes the corectness proof.

Regarding the complexity, we rely on the fact that for each respective kind of splitter
(C, q), (C, s) and (C, a), it is known (from the word case) that it suffices to process

13



respectively O(|Q| log |S|), O(|S| log |Q|) and O(|A| log |S|) candidates to fully refine
∼. Using appropriate data structures, one can implement the algorithm such that each
kind of splitter can be processed in time respectively O(|γ−1

q (C)|), O(|γ−1
s (C)|) and

O(|λ−1
a (C)|). The total complexity of the algorithm is then O(|A| log |A|). ♦

2.4 BUNFA and determinization

Definition 9. A bottom-up non-deterministic forest automaton (BUNFA) is a tuple:

A = 〈S,Q, I ⊆ S, γ : S ×Q→ 2S , λ : S ×A→ 2Q, F ⊆ S〉

γ and λ are extended into maps respectively from 2S × 2Q to 2S and from 2S × A to
2Q by:

γ(T,R) =
⋃
s∈T

⋃
q∈R

γ(s, q)

λ(T, a) =
⋃
s∈T

λ(s, a)

A BUNFA defines a map from F(A) to 2S , by induction on the structure of forests:

– 0A = I

– (t1 + a · t2)A = γ(tA1 , λ(tA2 , a))

A forest t is accepted by A if tA ∩ F 6= ∅.

1

a :  2,1

b :  3,1

1 ,2 ,3 ,4

2

a :  2,1

b :  2,1
2

3

a :  4,1

b :  2,1

3

4

a :  2,1

b :  2,1

4

1

1 ,2 ,3 ,4

3

4

1

2

1 ,2 ,3 ,4

4

1

2

3

1 ,2 ,3 ,4

Figure 9: A BUNFA

Example 4. The automaton in figure 9 recognizes forests over {a, b} containing a
path from a leaf to the root that ends in ab. It was generated from an automaton
accepting the word ab.

Proposition 5. Given a BUNFA A, algorithm 4 computes a BUDFA that accepts
the same language as A.
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Algorithm 4 Determinization algorithm

1: Q′ := ∅
2: for all s ∈ S, a ∈ A do
3: q′ := λ(s, a)
4: if q′ 6∈ Q′ then
5: ADD(Q′, q′)
6: for all q′′ ∈ Q′ do
7: if q′ ∪ q′′ 6∈ Q′ then
8: ADD(Q′, q′ ∪ q′′)
9: end if

10: end for
11: end if
12: end for
13: L := {I}, S′ := {I}
14: repeat
15: s′ := EXTRACT (L)
16: for all q′ ∈ Q′ do
17: s′′ :=

⋃
s∈s′

⋃
q∈q′ γ

′(s, q)
18: if s′′ 6∈ S′ then
19: ADD(S′, s′′), ADD(L, s′′)
20: end if
21: end for
22: until L = ∅
23: Define γ′ :

S′ ×Q′ −→ S′

(s′, q′) 7−→ ⋃
s∈s′

⋃
q∈q′ γ(s, q)

24: Define λ′ :
S′ ×A −→ Q′

(s′, a) 7−→ ⋃
s∈s′ λ(s, a)

25: return (S′, Q′, I, γ′, λ′, {s′ ∈ S′ | s′ ∩ F 6= ∅})

Proof: First, we remark that the BUDFA Ap = (2S , 2Q, I, γ, λ, Fp) where Fp = {P ⊆
S | P ∩ F 6= ∅} recognizes the same language as A, but it requires the computation of
a huge number of non-reachable states.

There are different approaches to reduce the number of useless states created during
the determinization process. In this algorithm, we first determinize λ: we create a
new vertical state for each subset of Q that appears in λ. Additionally, we create new
vertical states for any union of such subsets. It is not guaranteed that those states are
reachable, but their usefulness will be explained below.

The next step is to determinize the extended horizontal NFA (S,Q′, γ, I, F ), using
the standard determinization procedure. We obtain a DFA (S′, Q′, γ′, I, F ′). But it
remains to extend the output function λ to S′ × A. Because we had created vertical
states for all the unions of λ(s, a) for all s ∈ S, a ∈ A, we know that for all s′ ∈
S′, a ∈ A,

⋃
s∈s′ λ(s, a) ∈ Q′, hence λ can be extended into λ′ : S′ × A → Q′ and

(S′, Q′, I, γ′, λ′, F ′) is a BUDFA that accepts the same language as A. ♦

Instead of creating vertical states for the unions of all λ(s, a) for all s ∈ S, a ∈ A, we
could have restarted the determinization process on the automaton (S′, Q′, I, γ′, λ :
S′ × Q′ → 2Q

′
, F ′). This approach does yield a determinized automaton, but it

can have more than 2S horizontal states, most of which are either equivalent of non-
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reachable. Because |S| � |Q| in all practical cases, the cost of creating more vertical
states than necessary is offset by the reduction of the number of horizontal states.

2.5 Computing the syntactic forest algebra of a language

In the case of word languages, it is well known that the syntactic monoid is isomorphic
to the transition monoid of the minimal automaton accepting the language. In this
section, we show how this result can be extended to forest algebras.

AL = 〈F(A)/∼L, T (A)/≡L, [0]∼L
, γ, λ, [L]∼L

〉 denotes the minimal BUDFA of a rec-
ognizable forest language L, and its transition forest algebra is defined as follows:

– The horizontal monoid is H = (〈γ[t]≡L
| t ∈ T (A)〉, id, ∗), where

γ[t2]≡L
([t1]∼L

) = [t1 + t2]∼L

for all [t1]∼L
∈ F(A)/∼L, [t2]≡L

∈ T (A)/≡L
– The vertical monoid V is the submonoid of (HH , id, ◦) generated by rootings and

insertions, as explained below.

– The action is function application.

To simplify notation, we will write γt instead of γ[t]≡L
if t ∈ T (A). Furthermore, we

extend this notation to forests as follows:

– If t is the empty forest, then γt is id.

– If t = as, let γt = γλ(γs([0]∼L
),a).

– Otherwise, there exists some n ∈ N∗ such that t = t1 + · · ·+ tn where t1, . . . , tn ∈
T (A). We then define γt = γ[t1]≡L

∗ · · · ∗ γ[tn]≡L
.

Notice that if t1, t2 ∈ T (A) and [t]∼L
∈ F(A)/∼L,

γt1 ∗ γt2([t]∼L
) = γt2(γt1([t]∼L

))

= γt2([t+ t1]∼L
)

= [t+ t1 + t2]∼L

Hence, for any forest t2, γt2([t1]∼L
) = [t1 + t2]∼L

.

Lemma 3. Let t1, t2 ∈ F(A). Then [t1]≡L
= [t2]≡L

if and only if γt1 = γt2 .

Proof: It suffices to show that t1 ≡L t2 if and only if for all t ∈ F(A), [t + t1]∼L
=

[t+ t2]∼L
. The “if” part is obvious since ≡L⊆∼L, while the “only if” part was already

proven to show that the minimal automaton is well defined. ♦

We will now build a similar correspondence between contexts and elements of V . For
a ∈ A, let

H −→ H

va : γs 7−→ γas

vinL(t) : γs 7−→ γt+s

vinR(t) : γs 7−→ γs+t

It is easy to see that any context can be uniquely decomposed (up to commutation of
left and right insertions) in a product of factors of one of the following forms: a(∗),
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inL(t) and inR(t) for some t ∈ F(A). For p ∈ C(A), we define vp by induction on
the previous decomposition. The basis cases are already handled; if p = p1 ◦ p2, let
vp = vp1 ◦vp2 . Notice that vinL(t) and vinR(t′) commute for all t, t′ ∈ F(A). Using these
notations, V is exactly 〈va, vinL(t), vinR(t) | a ∈ A, t ∈ F(A)〉.

Lemma 4. Let p1, p2 ∈ C(A). Then [p1]≡L
= [p2]≡L

if and only if vp1 = vp2 .

Proof: We first show by induction on p ∈ C(A) that ∀t ∈ F(A), γp·t = vp(γt):

– If p = ∗, this is obvious.

– If p = inL(t′), γp·t = γt′+t = vinL(t′)(γt). The case p = inR(t′) is similar.

– If p = a(∗), vp(γt) = γλ(γt([0]∼L
),a) = γat.

– If p = p1 ◦ p2, γ(p1◦p2)·t = γp1·(p2·t) = vp1(vp2(γt)) by induction hypothesis, while
vp1◦p2 = vp1 ◦ vp2 .

vp1 = vp2 if and only if for all t ∈ F(A), vp1(γt) = vp2(γt), i.e. γp1·t = γp2·t.

From the previous lemma, γp1·t = γp2·t if and only if, p1 · t ≡L p2 · t. ♦

The two previous lemmas can be combined into

Theorem 1. The syntactic forest algebra and the transition forest algebra of the min-
imal automaton of a forest language L are isomorphic. The isomorphism of forest
algebras is given by:

(α, β) :
(HL, V L) −→ (H,V )

([t]≡L
, [p]≡L

) 7−→ (γt, vp)

Proof: We have already seen that α and β are two well-defined monoid isomorphisms.
It remains to verify that α([p]≡L

· [t]≡L
) = β([p]≡L

)α([t]≡L
), in other words that

γp·t = vp(γt). This was already proven in the previous lemma. ♦

Remark 7. In the above construction, assuming |S| = n, since H is the transition
monoid of the horizontal DFA of A, |H| 6 nn and this bound is tight. However,
when considering the size of a forest algebra, only the size of the vertical monoid is
important as it contains the horizontal monoid. But since V is a submonoid of HH ,
it can potentially have up to nn

n+1

elements.

In fact, there is a much lower bound. Assume S = {0, . . . , n − 1} and s0 = 0. Let
I = 〈vinL(t), vinR(t) | t ∈ F(A)〉. Since left and right insertions commute, there is an
injective map I → 〈vinL(t)〉 × 〈vinR(t)〉, hence |I| 6 |H|2 6 n2n.

Let R = {F ∈ HH | F (γ) only depends on the value of γ(0)}. If F ∈ R, F is essen-

tially a map from S to H, hence |R| 6 (nn)
n

= nn
2

. Furthermore, R is a left ideal of
V that contains all rootings and products of rootings.

Let F ∈ V . Either F contains no rooting, or it can be written F ′ ◦ va ◦ J with J ∈ I
(J can be the insertion of an empty forest). Since F ′ ◦ va ∈ R, it follows that:

|V | 6 n2n(1 + nn
2

)

Although we believe |V | = Ω(nn
2

) in the worst case, we do not think the above bound
is tight and a more detailed analysis of |V | remains to be conducted.
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2.6 Logical characterization

It is well-known that a word language is accepted by a finite state automaton if and
only if it can be defined by some monadic second order (MSO) sentence with a binary
successor predicate on the positions of letters and a family of letter-testing unary
predicates.

In this section, we show that a forest language is recognizable if and only if it can be
defined by a MSO sentence with two binary predicates (next-sibling and child) and a
collection of unary label-testing predicates.

First, we define the syntax of first-order formulas over this signature. We will denote
this logic FO[N,C]:

ϕ ::= x = y | N(x, y) | C(x, y) | La(x), a ∈ A | ϕ ∧ ϕ | ¬ϕ | ∃xϕ

We will also use the usual abbreviations ϕ∨ϕ,ϕ→ ϕ and ∀xϕ. We interpret FO[N,P ]
formulas as follows: we consider a forest t over the alphabet A to be a map from a
prefix-closed domain Pos(t) ⊆ N∗ to A. The domain of the interpretation I is N∗.
The interpretation of N and C are given by:

∀p, p′ ∈ N∗, NI(p, p′) if and only if ∃p′′ ∈ N∗,∃i ∈ N, p = p′′ · i ∧ p′ = p′′ · (i+ 1)

∀p, p′ ∈ N∗, CI(p, p′) if and only if ∃i ∈ N, p = p′ · i

To deal with free variables occuring in the formula, we define V-forests over A as forests
t over the extended alphabet A × 2V given a finite set V of first-order variables such
that if {(ai, Ui), i 6 n} denotes the set of labels in t, Ui ∩ Uj = ∅ for all i 6= j and⋃
i6n Ui = V.

Let ϕ ∈ FO[N,C] be a first-order formula, V denotes the set of free variables in ϕ.
We assume bound variables are pairwise distinct and do not appear in V. If t is a
V-forest, we define t |=I ϕ (read t is a model of ϕ or t satisfies ϕ with respect to the
interpretation I) by induction on the syntax of ϕ:

– t |=I La(x) if and only if ∃p ∈ Pos(t), t(p) = (a, U) with x ∈ U .

– If P is a binary predicate, t |=I P (x, y) if and only if P I(px, py), where px is the
position such that t(px) = (ai, Ui) with x ∈ Ui.

– t |=I ϕ1 ∧ ϕ2 if and only if t |=I ϕ1 and t |=I ϕ2.

– t |=I ¬ϕ if and only if t 6|=I ϕ.

– t |=I ∃xϕ if and only if ∃i 6 n, ti |=I ϕ where ti is the V ∪ {x}-forest obtained
by replacing the label (ai, Ui) in t by (ai, Ui ∪ {x}).

We define the language accepted by ϕ as:

Lϕ = {t ∈ F(A ∪ V(ϕ)) | t |=I ϕ}

where V(ϕ) denotes the set of free variables of ϕ. If ϕ has no free variable, we say that
ϕ is a sentence and the language accepted by ϕ is a subset of F(A).

We now define the syntax of the monadic second-order logic fragment MSO[N,C] :

Φ ::= ϕ ∈ FO[N,C] | X(x) | ∃XΦ

Uppercase letters X,Y . . . are used to denote second-order variables. We define the
semantic of MSO[N,C] formulas on (V,W)-forests, i.e. forests t over the extended
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alphabet A×2V×2W such that the restriction of t to labels in A×2V is a V-forest and
W is a finite set of second-order variables. Our definition of satisfiability is extended
as follows:

– t |=I ϕ ∈ FO[N,C] if and only if the restriction of t to labels in A × 2V is a
model of ϕ.

– t |=I X(x) if and only if there exists a position p ∈ Pos(t) such that t(p) =
(ai, Vi,Wi) with x ∈ Vi and X ∈Wi.

– t |=I ∃XΦ if and only if there exists a set of positions P ⊆ Pos(t) such that
the (V,W ∪ {X})-forest obtained by replacing all labels t(p) = (ap, Vp,Wp) for
p ∈ P by (ap, Vp,Wp ∪ {X}) satisfies Φ.

We also define the language accepted by Φ ∈MSO[S,N ] to be the set of V(Φ),W(Φ)-
forests that satisfy Φ, where W(Φ) denotes the set of free second-order variables in
Φ. It is a forest language if Φ is a sentence. Just like the class of regular language is
equal to the class of MSO[S]-definable languages, a forest language is regular if and
only if it is MSO[N,C]-definable. The proof of this fact, adapted from [4], is almost
the same for words and forests.

Proposition 6. If the BUDFA A = (S,Q, s1, γ, λ, F ) accepts the forest language L,
there exists a MSO[N,C] sentence Φ such that L = LΦ.

Proof: We will build a formula that states there exists an accepting run of the au-
tomaton. Assume |S| = n, |Q| = m. We will use two families of second-order variables
(Si)i6n and (Qi)i6m. Qi(x) will be true if the subtree at position x is assigned the
vertical state qi by the automaton. Si(x) will be true if after reading the sequence of
the vertical states of the left-siblings of x then the vertical state of x the horizontal
DFA is in state si. The first step is to ensure each node gets at most one horizontal
and vertical state:

Φ1 := ∀x

 ∧
16i 6=j6n

Si(x)→ ¬Sj(x)

 ∧
 ∧

16i 6=j6m

Qi(x)→ ¬Qj(x)


We will need macros to select nodes that have no left or right sibling: last(x) :=
¬∃y,N(x, y), first(x) := ¬∃y,N(y, x). The next formula means the run ends in an
accepting state:

Φ2 := Qx, (last(x) ∧ ¬∃y, C(x, y))→
∨
si∈F

Si(x)

The quantifier Q is ∀ if s1 ∈ F and ∃ otherwise. The next step is to ensure that the
state assignement is consistant with λ and γ:

Φ2 := ∀x,
∧

λ(s1,a)=qj

(¬∃y, C(y, x) ∧ La(x))→ Qj(x)

Φ3 := ∀x,
∧

γ(s1,qi)=sj

(first(x) ∧Qi(x))→ Sj(x)

Φ4 := ∀x, (∃y,N(x, y))→
∧

γ(si,qj)=sk

(Si(x) ∧Qj(y))→ Sk(y)

Φ5 := ∀x, (∃y, C(x, y) ∧ last(x))→
∧

λ(si,a)=qj

(Si(x) ∧ La(y))→ Sj(y)
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The MSO[N,C] sentence:

Φ := ∃S1 · · · ∃Sn∃Q1 · · · ∃QmΦ1 ∧ Φ2 ∧ Φ3 ∧ Φ4 ∧ Φ5

is satisfied by a forest t if and only if there exists an accepting run of A on t. ♦

Proposition 7. Given an MSO[N,C] sentence Φ, there exists a BUNFA that accepts
LΦ.

Proof: We proceed by induction on Φ. Because free variables will appear in the
induction, we show instead that for any formula Φ we can build an automaton that
accepts the (V(Φ),W(Φ))-forests defined by Φ. It is easy to build a BUNFA Av that
accepts the language L of all (V(Φ),W(Φ))-forests.

– If Φ = La(x), a BUDFA with 2 horizontal and 2 vertical states can easily test if
there is a label (a, V,W ) with x ∈ V . The intersection with Av accepts LΦ.

– Similarly, if Φ = N(x, y), Φ = C(x, y), Φ = (x = y) or Φ = X(x) a BUDFA that
accepts Lϕ can be easily constructed.

– If Φ = Φ1∧Φ2, it is easy to build a BUDFA that accepts Lϕ1
∩Lϕ2

∩L. Similarly,
if Φ = ¬Ψ, it is easy to build a BUDFA that accepts L \ LΨ.

– If Φ = ∃xΨ, Let (S,Q, s0, γ, λ, F ) be a BUDFA that accepts Ψ. We consider
the BUNFA (S × {0, 1} ] {s⊥}, Q × {0, 1} ] {q⊥}, (s0, 0), γ′, λ′, F × {1}) where
γ′(s⊥, ∗) = γ′(∗, q⊥) = s⊥, λ′(s⊥, ∗) = q⊥ and the value of γ′ and λ′ on non-sink
states is given in the tables below:

γ′ (s, 0) (s, 1)
(q, 0) (γ(s, q), 0) (γ(s, q), 1)
(q, 1) (γ(s, q), 1) s⊥

λ′ (s, 0) (s, 1)

(a, V,W )

{
(λ(s, (a, V ∪ {x},W )), 1)

(λ(s, (a, V,W )), 0)

}
(λ(s, (a, V,W )), 1)

This automaton accepts (V(Ψ) \ {x},W(Ψ))-forests t such that if x is added to
one of the middle components of a label, the resulting (V(Ψ),W(Ψ))-forest is
accepted by A, i.e. it recognizes L∃x,Ψ.

– If Φ = ∃X,Ψ, we use a similar construction on the third component of labels.

Like in the word case, each quantifier can potentially cause an exponential blowup of
the number of states. ♦

2.7 Comparison with existing automaton models

BUDFA are extremely similar to different well-studied models of tree automata. How-
ever, slight variations in the model can cause dramatic changes to the efficiency (and
in some cases, the realizability) of critical operations, particularly minimization.

In this section, we will compare BUDFA with the most widespread and well-understood
unranked tree automaton models, following the survey in chapter 8 of [5]. The first
such model is finite hedge automata (interestingly, the term hedge denotes what we
call forests), also called unranked tree automata (UTA). A non-deterministic FHA
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over A is a tuple (Q, δ : Q × A → Rec(Q), F ), where Rec(Q) denotes the family of
regular languages over Q. A run of the NFHA is a labelling λ : Pos(t)→ Q such that
for every p ∈ Pos(t), if n denotes the number of children of p, then λ(p ·1) · · ·λ(p ·n) ∈
δ(λ(p), t(p)). We will write a(R) → q instead of δ(q, a) = R. In particular, a leaf
labelled by a can be assigned the state q if ε ∈ R. The automaton accepts a tree if
there is a run such that the root is labelled with a state in F .

Compared to BUDFA, there is a major difference: there is no direct link between the
horizontal and vertical states, since the NFHA only handle the vertical aspect of the
automaton, while the horizontal level is solely specified by the regular languages R. As
a result, there are different kinds of FHA depending on how the regular languages of the
transitions are represented. However, even if the transition languages are represented
by deterministic finite state automata, and we assume determinism on the vertical
level (i.e. if a(L1) → q1 and a(L2) → q2 then q1 6= q2 or L1 ∩ L2 = ∅), the resulting
model of “deterministic” FHA does not have a unique minimal automaton, as shown
in [6]. It is however possible to minimize the number of vertical states using the
analog of the vertical syntactic congruence for trees, but the minimization of the whole
representation is NP-complete.

BUDFA are almost identical to deterministic stepwise automata (DSA). A DSA is
a tuple (Q,A, (Da)a∈A, F ) where each Da is the horizontal automaton with output
Da = (Sa, Q, s

in
a , δa : Sa × Q → Sa, λa : Sa → Q). It is quite easy to transform a

DSA into a BUDTA (the analog of a BUDFA for trees: the automaton accepts based
on vertical states instead of horizontal states). The resulting BUDTA has at most∑
a∈A |Sa| horizontal states and |A| · |Q| vertical states: Let S = {s0}

⊎
a∈A Sa, Q′ =

Q × A, λ(s ∈ Sa, a) = (λa(s), a), γ(s ∈ Sa, (q, a)) = δa(s, q), λ(s0, a) = (λa(sina ), a),
γ(s0, (q, a)) = δa(sina , q).

It might seem that DSA are more concise than BUDTA. However, assume that A is
a BUDTA such that λ(s, a) = λ(s, b) for all s ∈ S and a, b ∈ A. A DSA would need a
total of |S| · |A| horizontal states to recognize the same language. More importantly,
assuming the BUDTA is minimal, all those horizontal states would be non-equivalent,
while when converting a DSA to a BUDFA, there is a chance that some of the added
vertical states can be reduced, and it is almost certain that many horizontal states are
equivalent (at least the sink states can be merged). From an algebraic point of view,
adding a horizontal state means increasing the dimension of the transformation space
in which the horizontal monoid of the transition forest algebra lives, while adding a
vertical state adds a generator but does not increase the dimension. It is thus desirable
to have as few horizontal states as possible.

The problem of DSA minimization is studied in [2], in which an analog of algorithm 1
is presented, although its proof is quite sketchy. The authors of this paper claim the
algorithm can be implemented in O(|A|2) while asking whether if it is possible to
improve this complexity. We claim algorithm 3 can be implemented in O(|A| log |A|).
It is shown in [5] that a DSA can be transformed into a deterministic tree automaton
on binary trees, using the external encoding: the tree a(a1 + · · · + an) is encoded
into @(@(· · ·@(a, a1) · · · , an−1), an), where the letters are nullary symbols and @ is
a new binary symbol. There is a similar encoding of (non empty) forests into binary
trees that preserves recognizability: the forest t = a(t1 + · · · + tn) is encoded into
E(t) = @(+(· · · + (E(t1), E(t2)) · · · , E(tn)), a), with E(a) = a′ ∈ A′ a disjoint copy
of A. Let A = (S,Q, s0, γ, λ, F ) be a BUDFA over the alphabet A. We build a
deterministic tree automaton (S]Q]A]⊥,∆, F ) over the signature {a : 0, a ∈ A, a′ :
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0, a′ ∈ A′,+ : 2,@ : 2}. There are three kinds of rules: a′ → λ(s0, a) for all a′ ∈ A′,
a→ a for all a ∈ A, +(s, q)→ γ(s, q) for all s ∈ S, q ∈ Q and @(s, a)→ λ(s, a) for all
s ∈ S, a ∈ A. The missing transitions lead to the sink state ⊥. It is easy to see that
this encoding is bijective and preserves regularity.

3 The forestalg GAP package

GAP [7] is a software suite for computational discrete algebra. We created a GAP
package dedicated to the study of forest algebras and forest automata. The package
can be downloaded from the author’s webpage1. The reason we chose GAP is because
the ultimate goal of this research is to characterize tree logics and families of regular
tree languages using properties of their syntactic forest algebras, and GAP provides a
large number of tools to study the properties of algebraic objects.

At the time this report was written, the package supported the following features:

1. Forest algebras: it is possible to define a forest algebra by the generators of its
horizontal and vertical monoid and an explicit description of the action. Given
a forest algebra, one can extract its horizontal or vertical monoid and action,
compute the action of a given vertical element on an horizontal element, and test
whether the horizontal or vertical monoid is commutative, aperiodic, idempotent,
R-, L- or J -trivial.

It is also possible to draw the Green’s relations and the Cayley graph of the
horizontal and vertical monoid.

2. BUDFA: it is possible to input BUDFA and BUNFA. If the input automaton is
non-deterministic, it will be transformed into a BUDFA using algorithm 4 and
trimmed of its non-reachable states.

There are functions to create two specific kinds of BUDFA: one for tree languages
(given the size of the alphabet, returns a BUDFA that recognizes trees), and one
for path languages (given a DFA or a rational expression, returns a BUDFA that
accepts forests that contain a path labelled by a word accepted by the DFA or
rational expression).

A function is provided to test whether a given forest is accepted by a BUDFA.
Given two automata, it is also possible to build a BUDFA that recognizes the
union and intersection of their accepted languages.

The package also implements the minimization algorithm 3, however because of
a lack of efficient data structure for sets and partitions in GAP, the complexity
of this implementation is not optimal. It is still possible to minimize BUDFA
such that |S| · |Q| 6 216 in less than a minute.

Finally, there are functions to draw BUDFA, and what we call the BUDFA
action (a graph in which each node is an element of the horizontal monoid of the
transition forest algebra and edges are labelled by the generators of the vertical
monoid, i.e. the left and right insertions and the rootings).

Figure 10 shows a BUDFA drawn by the package and its action. For an extended
description of the package and its functions, the manual is given in the appendix of
this report.

1http://antoine.delignat-lavaud.fr
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Figure 10: A BUDFA for the maximal path language (a+ c)a+b+ and its action
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4 Conclusion and further research

In this report, we presented what we belive to be a robust automaton model for an
algebraic study of regular forest languages. Although the main feature of this model
is its algebraic soundness, its behavior with respect to determinization and minimiza-
tion is remarkably good. For instance, our implementation of algorithm 3 showed
a loglinear behavior on all the instances we tested it with (including big automata
obtained from the determinization of complex BUNFA containing many equivalent
states). However, the task of analyzing the precise complexity of the algorithm using
proper data structures for handling the partition and set operations remains to be
performed.

Our work on automata also produced some interesting byproducts. For instance, we
have seen that if a forest language is recognized by a BUDFA with n states, then its
vertical syntactic monoid has O(nn

2+o(n2)) elements. It would be interesting to see if
the given bound on |V | can be improved or if we can find a family of BUDFA such
that the bound is tight.

Another byproduct of this research is that for every recognizable forest language L,
there exists an integer n such that HL is isomorphic to a submonoid Th of Tn =
{1 . . . n}{1...n} and V L is isomorphic to a submonoid Tv of Tm where m = |HL|. There
also exists a bijection π : Th → {1 . . .m} such that the action of (Th, Tv) is function
application, i.e. v · h = π−1(v(π(h))), in other words the action of the forest algebra
is implicitly contained in the vertical monoid.

Our GAP package for forest algebras could be improved in different ways. First, it is
missing a function to create an BUDFA from a given formula inMSO[N,C] (or another
fragment of logic, like EF or CTL). Moreover, the package is lacking specific tools to
analyze forest algebras as a whole. All the provided tools work either on the horizontal
or vertical monoid. The problem to solve here is what exactly should we be looking
for in the forest algebra that can give us information about the recognized language?
A possible lead to investigate is the action preorder and equivalence: h1 �V h2 if there
exists some v ∈ V such that h1 = v · h2, and h1 ≈V h2 if and only if h1 �V h2 �V h1.
Papers focusing on characterizing forest languages definable in a given logic, such as
[8] or [9], can give indications on what to look for.
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Chapter 1

Reference manual

1.1 Operations on forests

Forests are ordered collections of unranked trees over some alphabet. Concatenation of forests (putting
a forest after another) is denoted additively (although it is not a commutative operation) while the a-
rooting of a forest f (the tree of root a and having f as children) is denoted multiplicatively.

1.1.1 Forest

♦ Forest(Expression) (function)

Creates a forest object. Expression can either be a string containing the decomposition of the
forest into sums and rootings, following this syntax:

Forest ::= a | Forest+Forest | a(Forest)

or it can use the internal list representation; labels are lower case characters, e.g. ’a’, rootings are
stored in list in which the first value is the label of the rooting node and the second is the list describing
the rooted forest. Finally, the sum of two forests is the concatenation of the list that describe them

Example

gap> f := Forest("a+b(a(b)+b(a+a))+c(c(c+a)+b)");
a+b(a(b)+b(a+a))+c(c(c+a)+b)
gap> g := Forest([’b’, [’a’,[’b’,’b’]]]);
b+a(b+b)

1.1.2 \+

♦ \+(Forest1, Forest2) (function)

Returns the concatenation of Forest1 and Forest2 into a new forest;
Example

gap> f+g;
a+b(a(b)+b(a+a))+c(c(c+a)+b)+b+a(b+b)

5
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1.1.3 ForestRooting

♦ ForestRooting(Char, Forest) (function)

Returns the rooting of Forest under the lowercase character Char.
Example

gap> ForestRooting(’b’, f);
b(a+b(a(b)+b(a+a))+c(c(c+a)+b))

1.1.4 WriteDotForest

♦ WriteDotForest(Forest, File) (function)

This will convert the forest Forest into a DOT graph file for the GraphViz library. File is the
name of the output file, this function returns the temporary directory where the DOT file was written.

Example

gap> WriteDotForest(f, "forest.dot");
dir("/tmp/tmp.sGATtd/")

b

a b

b a a

c

c b

c a

a

Figure 1.1: Output of the DrawForest function

1.1.5 DrawForest

♦ DrawForest(Forest) (function)

This will convert the forest Forest into a DOT graph file, run GraphViz on the resulting file and
display the produced image in one of the PS viewer found on your system.

Example

gap> DrawForest(f);
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Displaying file: /tmp/tmp.2eSCn4/forest.dot.ps

1.2 Operations on forest algebras

Forest algebras are pairs (H,V ) of monoids (horizontal and vertical) with a faithful monoidal action
of V on H and a pair of morphism from H to V called the left and right insertions inL and inR such
that inL(g) ·h = g+h and inR(g) ·h = h+g for all g,h ∈H. Forests algebras are created by giving the
horizontal and vertical monoid, along with the action (the insertion functions are uniquely defined by
the action and its axioms). The action table is only given for the generators of the vertical semigroup
(recall that all semigroups in GAP are generated by some transformations).

1.2.1 ForestAlgebra

♦ ForestAlgebra(Horizontal, Vertical, Action) (function)

Creates a forest algebra structure. Horizontal and Vertical are both in the Semigroup category,
while Action is a matrix with m rows and n columns where m is the number of generators of Vertical
and n is the number of elements in Horizontal. If E denotes the list of elements of Horizontal and
G the list of generators of Vertical, Action[i][j]=k if and only if the action of G[i] on E[k] is
E[k].

Example

gap> H := Monoid([Transformation([2,2,3]), Transformation([3,3,3])]);
<monoid with 2 generators>
gap> V := Monoid([Transformation([2,2,3]), Transformation([3,3,3]),

Transformation([2,3,3])]);
<monoid with 3 generators>
gap> Elements(H);
[Transformation([1..3]), Transformation([2,2,3]), Transformation([3,3,3])]
gap> A := [[1, 2, 3 ],[2, 2, 3],[3, 3, 3],[2, 3, 3]];
gap> HV := ForestAlgebra(H, V, A);
<H has 3 generators and 3 elements, V has 4 generators>

1.2.2 Display

♦ Display(ForAlg) (function)

Prints the multiplication table of the horizontal and vertical monoid, then the action table of
ForestAlg.

Example

gap> Display(HV);
[ [ 1, 2, 3 ],

[ 2, 2, 3 ],
[ 3, 3, 3 ] ]

[ [ 1, 2, 3, 4 ],
[ 2, 2, 4, 4 ],
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[ 3, 3, 4, 4 ],
[ 4, 4, 4, 4 ] ]

[ [ 1, 2, 3 ],
[ 2, 2, 3 ],
[ 3, 3, 3 ],
[ 2, 3, 3 ] ]

1.2.3 ForestHorizontalMonoid

♦ ForestHorizontalMonoid(ForAlg) (function)

Returns the horizontal monoid of ForestAlg.
Example

gap> Elements(ForestHorizontalMonoid(HV));
[ Transformation( [ 1, 2, 3 ] ), Transformation( [ 2, 2, 3 ] ),

Transformation( [ 3, 3, 3 ] ) ]
gap> IsCommutative(ForestHorizontalMonoid(HV));
true

1.2.4 ForestVerticalMonoid

♦ ForestVerticalMonoid(ForAlg) (function)

Returns the vertical monoid of ForestAlg.
Example

gap> GreensJClasses(ForestVerticalMonoid(HV));
[{Transformation([3,3,3])},{Transformation([2,3,3])},
{Transformation([2,2,3])},{Transformation([1,2,3])}]

1.2.5 ForestAction

♦ ForestAction(ForAlg) (function)

Returns the action table of ForestAlg.

1.2.6 ForestApplyAction

♦ ForestApplyAction(ForAlg, H, V) (function)

Computes the action of V on H in ForestAlg. H can either be an element of the horizontal monoid
of ForAlg (i.e. a transformation) or its index in the Elements of the horizontal monoid. V must be
a transformation in the vertical monoid of ForAlg, this function finds a decomposition of V using
generators of the vertical monoid and applies the action table on this decomposition.
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Example

gap> Elements(ForestVerticalMonoid(HV));
[Transformation([1,2,3]), Transformation([2,2,3]), Transformation([2,3,3]),

Transformation([3,3,3])]
gap> ForestApplyAction(HV, Transformation([1,2,3]), Transformation([2,3,3]));
Transformation([2,2,3])

1.2.7 IsHCommutative

♦ IsHCommutative(ForAlg) (function)

♦ IsVCommutative(ForAlg) (function)

Tests if the horizontal or vertical monoid of ForAlg is commutative.

1.2.8 IsHAperiodic

♦ IsHAperiodic(ForAlg) (function)

♦ IsVAperiodic(ForAlg) (function)

Tests if the horizontal or vertical monoid of ForAlg is aperiodic.

1.2.9 IsHIdempotent

♦ IsHIdempotent(ForAlg) (function)

♦ IsVIdempotent(ForAlg) (function)

Tests if the horizontal or vertical monoid of ForAlg is idempotent.

1.2.10 IsHRTrivial

♦ IsHRTrivial(ForAlg) (function)

♦ IsVRTrivial(ForAlg) (function)

Tests if the horizontal or vertical monoid of ForAlg is R -trivial.

1.2.11 IsHLTrivial

♦ IsHLTrivial(ForAlg) (function)

♦ IsVLTrivial(ForAlg) (function)

Tests if the horizontal or vertical monoid of ForAlg is L-trivial.

1.2.12 IsHJTrivial

♦ IsHJTrivial(ForAlg) (function)

♦ IsVJTrivial(ForAlg) (function)
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Tests if the horizontal or vertical monoid of ForAlg is J -trivial.

1.3 Operations on forest automata

A bottom-up deterministic forest automaton is a tuple (S,Q,s0,A,γ,λ,F) where S is a finite set of
horizontal states, s0 ∈ S is the initial state, F ⊆ S is the set of accepting states, Q is a finite set of
vertical states, γ : S×Q→ S is a semiautomaton on set S with alphabet Q, A is the alphabet of input
forests and λ : S×A→ Q is the vertical output function.

1.3.1 ForestAutomaton

♦ ForestAutomaton(Det, S, Q, A, T, L, i, F) (function)

Creates a forest automaton. Det is a boolean and must be set to true if the automaton is determin-
istic and false otherwise. If you input a non deterministic forest automatonm, it will be immediately
transformed into an equivalent minimal deterministic automaton. S, Q and A are integers that denote
respectively the number of horizontal and vertical states of the automaton and the size of the alphabet
(notice that the set of horizontal states is then {1 . . .S} and the set of vertical states is {1 . . .Q}, the dis-
tinction between each kind of states is given by the context). T is a matrix with Q rows and S columns
such that T[i][j]=k if and only if γ( j, i) = k if the automaton is deterministic, of if γ( j, i) ∈ k other-
wise. L is also a matrix with A rows and S columns such that L[i][j]=k if and only if λ( j,ai) = k if
the automaton is deterministic, or if λ( j,ai) ∈ k otherwise. i is the initial state (or set of initial states
if the automaton is non deterministic). F is a list of accepting states.

Example

gap> A := ForestAutomaton(true, 6, 3, 1,
[[2,5,6,6,6,6],[3,6,4,6,6,6],[6,6,6,6,6,6]],
[[1,3,3,1,2,3]],1,[2]);

<Forest automaton on {a}>
< deterministic automaton on 3 letters with 6 states >
gap> B := ForestAutomaton(true, 4, 4, 2,
[[3,3,3,4],[2,2,3,4],[1,1,3,4],[4,4,4,4]],
[[1,1,4,4],[2,3,1,4]],1,[1,2,3]);

<Forest automaton on {ab}>
< deterministic automaton on 4 letters with 4 states >
gap> C := ForestAutomaton(true, 3, 3, 2,
[[1,2,3],[2,2,3],[3,3,3]], [[2,3,3],[1,2,3]],1,[1,2]);

<Forest automaton on {ab}>
< deterministic automaton on 3 letters with 3 states >
gap> ND := ForestAutomaton(false, 4, 2, 2,

[[[1,2],,4,],[1,3,,]], [[1,,1,],[2,2,,]],1,[4]);
<Forest automaton on {ab}>
< deterministic automaton on 3 letters with 5 states >

1.3.2 Display

♦ Display(ForAut) (function)
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Displays the transition table of ForAut, its initial and accepting states and output function.
Example

gap> Display(A);
| 1 2 3 4 5 6

-----------------------
1 | 2 5 6 6 6 6
2 | 3 6 4 6 6 6
3 | 6 6 6 6 6 6

Initial state: [ 1 ]
Accepting state: [ 2 ]
Output function :
[ [ 1, 3, 3, 1, 2, 3 ] ]

1.3.3 TreesForestAutomaton

♦ TreesForestAutomaton(n) (function)

Returns the minimal automaton that recognizes the language of all trees on an alphabet with n
letters.

Example

gap> TreesForestAutomaton(4);
<Forest automaton on {abcd}>
< deterministic automaton on 1 letters with 3 states >

1.3.4 ReachableStatesForestAutomaton

♦ ReachableStatesForestAutomaton(A) (function)

Trims A of its non reachable states. This function is automatically called after determinization or
before minimization.

1.3.5 ProductForestAutomaton

♦ ProductForestAutomaton(A1, A2, F) (function)

Given two forest automata A1 and A2 on the same alphabet, computes the product automaton of A1
and A2 using F as the set of accepting states. F must be a list of products of states from A1 and A2, e.g.
[[1,3], [2,5]...]. This function mainly exists to provide the union and intersection operators.
The resulting automaton is trimmed but not minimized; it is not minimal in general.

1.3.6 \*

♦ \*(A1, A2) (function)

Returns the minimal automaton that recognizes the intersection of the languages accepted by A1
and A2. The resulting automaton is trimmed but not minimized; it is not minimal in general.
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Example

gap> A*TreesForestAutomaton(1);
<Forest automaton on {a}>
< deterministic automaton on 3 letters with 6 states >

1.3.7 \+

♦ \+(A1, A2) (function)

Returns the minimal automaton that recognizes the union of the languages accepted by A1 and A2.
The resulting automaton is trimmed but not minimized; it is not minimal in general.

Example

gap> B+C;
<Forest automaton on {ab}>
< deterministic automaton on 3 letters with 3 states >

1.3.8 ForestAutomatonAccepts

♦ ForestAutomatonAccepts(ForAut, For) (function)

Returns true if ForAut accepts the forest For and false otherwise.
Example

gap> f := Forest("a(a(a+a)+a(a(a(a+a)+a(a+a))+a))");
a(a(a+a)+a(a(a(a+a)+a(a+a))+a))
gap> ForestAutomatonAccepts(A, f);
true

1.3.9 MinimalForestAutomaton

♦ MinimalForestAutomaton(ForAut) (function)

Computes the minimal forest automaton of ForAut. It is safe to call this function multiple times
on the same automaton as it stores the result of its computation. This function does not change the
name of states for automaton that are already reduced.

Example

gap> MinimalForestAutomaton(B);
<Forest automaton on {ab}>< deterministic automaton on 3 letters with 3 states >
gap> B;
<Forest automaton on {ab}>< deterministic automaton on 4 letters with 4 states >
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1.3.10 TransitionForestAlgebra

♦ TransitionForestAlgebra(ForAut) (function)

Returns the transition forest algebra of ForAut.
Example

gap> HV := TransitionForestAlgebra(A);
<H has 3 generators and 5 elements, V has 4 generators>
gap> IsHAperiodic(HV);
true

1.3.11 SyntacticForestAlgebra

♦ SyntacticForestAlgebra(ForAut) (function)

Minimizes ForAut and returns its transition forest algebra, i.e. the syntactic forest algebra of the
language recognized by ForAut.

Example

gap> HV := SyntacticForestAlgebra(B);
<H has 4 generators and 4 elements, V has 7 generators>
gap> IsHCommutative(HV);
false

1.3.12 HorizontalForestAutomaton

♦ HorizontalForestAutomaton(ForAut) (function)

Returns an Automaton object (as used by the automata package) describing the horizontal au-
tomaton of ForAut, i.e. the automaton (S,Q,γ,s0,F).

Example

gap> ForestHorizontalAutomaton(C);
< deterministic automaton on 3 letters with 3 states >

1.3.13 ExistsPathInLanguageAutomaton

♦ ExistsPathInLanguageAutomaton(Regular, Maximal) (function)

Regular can either be an automaton or a rational expression describing a regular language L.
Computes a forest automaton that accepts forests containing a path labelled with a word in L. Maximal
is a boolean, if true such a path must be maximal, it can be any path otherwise. The labelling of a path
is read from the root to the leaves. Because the resulting automaton can be huge, it is trimmed but not
minimized.
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Example

gap> AB := RationalExpression("ab");
ab
gap> Aab := ExistsPathInLanguageAutomaton(AB, false);
<Forest automaton on {ab}>
< deterministic automaton on 3 letters with 4 states >
gap> ForestAutomatonAccepts(Aab, Forest("ba"));
true
gap> ForestAutomatonAccepts(Aab, Forest("bab"));
true
gap> Aabmax := ExistsPathInLanguageAutomaton(AB, true);
<Forest automaton on {ab}>
< deterministic automaton on 3 letters with 5 states >
gap> ForestAutomatonAccepts(Aabmax, Forest("bab"));
false

1.3.14 WriteDotForestAutomaton

♦ WriteDotForestAutomaton(ForAut, File) (function)

Creates a GraphViz Dot file describing the automaton ForAut. The ouput in written in File in a
temporary directory. This function returns the directory where File was written.

Example

gap> WriteDotForestAutomaton(A, "automaton_1");
dir("/tmp/tmp.0YxjY3/")

1.3.15 DrawForestAutomaton

♦ DrawForestAutomaton(ForAut) (function)

Uses GraphViz to draw the automaton ForAut and displays the resulting postscript file.
Example

gap> DrawForestAutomaton(A);
Displaying file: /tmp/tmp.sX024c/forest_automaton.dot.ps

1.3.16 WriteDotForestAction

♦ WriteDotForestAction(ForAut, File[, IgnElts]) (function)

This function computes the horizontal transformation monoid of ForAut and how the left and
right insertions and rootings act on its elements. The ouput is a GraphViz Dot file written in File.
This function accepts an optional argument IgnElts; it can either be a integer or a list or integers
that correspond to elements of the horizontal transformation monoid (using the order given by the



ForestAlg 15

1

a :  1

2

a :  3

1

3

a :  3

2

6

a :  3

3

2 , 3

5

a :  2

1

1 , 3

4

a :  1

2

1 ,2 ,3
1 ,2 ,3

1 ,2 ,3

Figure 1.2: Output of the DrawForestAutomaton function

Elements function) to be ignored, for instance those corresponding to sink states. This function
returns the temporary directory where File was written. Important remark: this function does not
minimize the automaton

Example

gap> WriteDotForestAction(A, "action_1");
dir("/tmp/tmp.0YxjY3/")

1.3.17 DrawForestAutomatonAction

♦ DrawForestAutomatonAction(ForAut[, IgnElts]) (function)

Similar to WriteDotForestAction, but draws a postscript file of the graph and displays it.
Example

gap> DrawForestAutomatonAction(A);
gap> DrawForestAutomatonAction(A, 5);
gap> DrawForestAutomatonAction(B, 4);
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Figure 1.3: Output of the DrawForestAutomatonAction function
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