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1 Acknowledgements and internship description

During my 7-weeks internship, I worked with the members of the modeling and
verification workgroup in the formal methods team at the Laboratoire Bordelais
de Recherche en Informatique.
I was given very good working conditions, having a lot of office space, a huge
whiteboard and some air conditioning to make the customary summer heat of
Bordeaux more bearable.
But, above all, it is the dedication of my advisors, Anca Muscholl and Marc
Zeitoun, that made this internship an enlightning experience. I can not thank
them enough for their guidance and willingness to involve me in their research.
This internship allowed me to familiarize with the very broad variety of tools and
techniques, both from mathematics and computer science, that are developed in
the mathematical theory of automata and formal languages.

2 Introduction to trace monoids and recognizability

In this section, we introduce the theory of traces and recognizability in non-free
monoids. This has been an active field of research since the seventies, when it
was popularized by Mazurkiewicz as a model of concurrency closely related to
the well-developed theory of automata. This section was mainly inspired by the
introduction in [1] by Diekert and Métivier.

2.1 Definition and basic properties

An alphabet Σ is a finite set whose elements are called letters. The free monoid
over Σ is the set of all finite words over Σ, or equivalently the Kleene-star Σ∗ =⋃
i>0 Σi; it is a monoid for concatenation where the empty word, which we denote

1, is the neutral element. Given a word w ∈ Σ∗, u = a1 · · · an with ai ∈ Σ is a
factor of w if there exist some x, y ∈ Σ∗ such that w = xuy. It is a subword of w
if there exist some w0, . . . , wn ∈ Σ∗ such that w = w0u1w1 · · ·unwn. If w, u ∈ Σ∗,
|w| denotes the length of w, |w|u the number of occurences of u as a factor in w
and

(
w
u

)
the number of occurences of u as a subword of w.

An independence or commutation relation is a symmetric and irreflexive relation
I ⊆ Σ× Σ. The pair (Σ, I) is called the independence alphabet and can be repre-
sented as an undirected graph called the commutation graph. The complement of
I in Σ× Σ is called the dependence relation and is denoted D.

Example 1 Σ = {a, b, c, d}, I = {(a, b), (b, c), (c, d)}. The commutation and de-
pendence graphs are given below. They will be studied in depth in section 5.
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Given a commutation relation I, we define the commutation equivalence ∼I over
Σ∗ as the least congruence such that ab ∼I ba for all (a, b) ∈ I. The quotient
M(Σ, I) = Σ∗/ ∼I (or M if there is no ambiguity) is called the free partially
I-commutative monoid or trace monoid, elements of M are called traces. The
canonical quotient homomorphism is denoted ϕI or [·]I . If t ∈ M, a word w ∈ Σ∗

such that t = [w]I is called a linearization of t.
If for all a 6= b ∈ Σ, we have (a, b) ∈ I, M is called the free commutative monoid,
and is isomorphic to NΣ through the Parikh homomorphism:

π :
M −→ NΣ

t = [w]I 7−→ (|w|a)a∈Σ

In this case, the projection ϕI is simply denoted ϕ or [·].
A trace language is a subset T ⊆ M. Note that it can also be viewed as a word
language over Σ, namely ϕ−1(T ). We say that a language L ⊆ Σ∗ is closed under
I-commutation if ϕ−1([L]I) = L.

2.2 Recognizable trace languages

Definition 1 Given a monoid M , an M -automaton is a tuple A = (Q, δ, F )
where Q is a finite monoid, F ⊆ Q and δ is a monoid homomorphism from M
to Q. The subset of M recognized by A is δ−1(F ). The family of subsets of M
recognized by a M -automaton is denoted Rec(M).

Definition 2 Let M be a monoid and let T ⊆ M . The syntactic preorder over
T , 6T is defined by x 6T y if for all u, v ∈M,uyv ∈ T ⇒ uxv ∈ T . The syntactic
equivalcne ≡T is defined by x ≡T y ⇔ x 6T y ∧ y 6T x. The syntactic monoid of
T is the quotient MT = M/ ≡T .

Definition 3 The family of rational sets of a monoid M , denoted Rat(M), is
the closure under union, concatenation and iteration (Kleene star) of the set of
finite subsets of M . The family of star-free sets, denoted SF (M), is obtained by
replacing iteration by complementation in the above definition.

Proposition 1 [2] Let ϕ : Σ∗ → M be a surjective homomorphism and T ⊆ M .
The following assertions are equivalent:

1. T ∈ Rec(M)

2. ≡T is of finite index, i.e. MT is finite.
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3. ϕ−1(T ) is a rational language over Σ.

Proof: (1)⇒ (2): Let (Q, δ, F ) be a M -automaton that recognizes T . We denote
by x̄ the equivalence class of x ∈ M for ≡T . Notice that |{x̄ |x ∈ M}| 6 |Q|: if
x, y ∈M are such that δ(x) = δ(y), then x̄ = ȳ since:

∀u, v ∈M,uxv ∈ T ⇔ δ(u)δ(x)δ(v) ∈ F ⇔ δ(u)δ(y)δ(v) ∈ F ⇔ uyv ∈ T

(2) ⇒ (1): If ≡T is of finite index, let ψ : M → MT be the canonical projection
on the syntactic monoid, we define the M -automaton A = (MT , ψ, ψ(T )). The
language recognized by A is ψ−1 ◦ψ(T ) ⊇ T . But since T is saturated by ≡T , i.e.
ψ−1 ◦ ψ(T ) ⊆ T , A recognizes T .
(1)⇔ (3): (Q, δ, F ) is a M -automaton that recognizes T if and only if (Q, δ◦ϕ, F )
is a Σ∗-automaton that recognizes ϕ−1(T ). ♦

Definition 4 We say that a trace (or word) is connected if the set of letters it
contains induces a connected subgraph of (Σ, D).

Definition 5 Assume the alphabet Σ is totally ordered by <. The lexicographic
normal form of a trace, denoted LNF (t), is the least linearization of t with regard
to <.

Proposition 2 A word w is the lexicographic normal form of a trace t ∈M if for
all factorizations w = xbyaz with (a, b) ∈ I and a < b, there exists a letter c in y
which is dependent from a.

From this proposition, we deduce that the set LexNF ⊆ Σ∗ of words in lexico-
graphic normal form is given by the star-free expression:

LexNF = Σ∗ \
⋃

(a,b)∈I,a<b

Σ∗bI(a)∗aΣ∗

where I(a) denotes the set of letters independent from a.

Theorem 1 (Ochmanski) Let T ⊆M(Σ, I). The following assertions are equiv-
alent:

1. T is a recognizable language.

2. ϕ−1(T ) ∩ LexNF is a regular language of Σ∗.

3. T is described by a star-connected rational expression, i.e. where the Kleen-
star is used over connected traces only.

This combinatorial proof is omitted here but can be found in [1]
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2.3 Some results from logic

Recall that given the following:

1. A countable set of variables V ar.

2. A countable set of constants Cst.

3. A countable family Fct = ∪i>0Fcti where Fcti is the set of functions of arity
i.

4. A countable family Pred = ∪i>0Predi where Predi is the set of predicates
of arity i.

we define terms by induction as follows: a variable or a constant is a term, and if
f ∈ Fcti and t1, . . . , ti are terms, then f(t1, . . . , ti) is a term. Atoms are formed
in the same way using predicates.
First-order formulae are defined by induction as follows: an atom is a formula,
and if A,B are formulae and x ∈ V ar, the following are formulae: ¬A, A ⇒ B,
A ∧B, A ∨B, ∃xA and ∀xA.
Using first-order formulae, we define a predicate calculus called first-order logic
(FO) using the axiom schemata of propositional calculus together with following:

1. Quantifiers equivalence: ∃xF ⇒ ¬∀x¬F and ∀xF ⇒ ¬∃x¬F .

2. Instantiation ∀xF (x)⇒ F [x← r].

3. Limited inversion ∀x(F ⇒ G)⇒ (F ⇒ ∀xG) if x is not free in F .

The inference rules are modus ponens (A,A ⇒ B ` B) and generalization (A `
∀xA).

Example 2 (Presburger arithmetic) Presburger arithmetic is the first-order
theory with equality (along with its axioms) having constants {0, 1}, a unary suc-
cessor function, a binary function + and a binary predicate <. Axioms are the
universal closure of the following:

1. ¬(0 = x+ 1)

2. x+ 1 = y + 1⇒ x = y

3. x+ 0 = x

4. (x+ y) + 1 = x+ (y + 1)

5. If P (x) is a first-order formula in Presburger arithmetic having a free vari-
able x, the following axiom schema holds: (P (0)∧∀x(P (x)⇒ P (x+ 1)))⇒
P (y)

This theory has a natural and more importantly decidable interpretation over the
integers, as we will see below.
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Second-order logic is obtained by adding two countable sets of predicate variables
and function variables, which can be used with quantifiers. Monadic second-
order logic, denoted MSO, is the fragment of second-order logic without function
variables and where predicate variables are monadic (they can only be used to
quantify unary predicates).
FO and MSO have a nice interpretation in formal languages. The domain of
the interpretation is Σ∗. First-order variables denote positions in a word, while
predicate variables denote sets of positions. We will use a position order predicate
<, a succesor predicate S(x, y) which is true when y is the position following x and
a set of predicates (Qa)a∈Σ such that Qa(x) is true when there is an a at position
x.
Using this interpretation, we denote L(ψ) the language defined by a closed formula
ψ (i.e the set of words that satisfies it).

Example 3 Let the FO sentence:

ψ ≡ ∀x∀y(Qa(x) ∧Qa(y))⇒ ∃z(x < z ∧ z < y ∧Qb(z))

The language defined by ψ is the set of words such that any two consecutive a’s
have at least one b inbetween:

L(ψ) = Σ∗ \ (Σ∗a(Σ \ {b})∗aΣ∗)

Theorem 2 A language is defineable by an MSO sentence if and only if, it is
recognizable.

Proof: (⇐): Assume that A = (Q, I, δ, F ) is a finite state automaton that
recognizes L. We give a MSO formula to express that A has an accepting run. If
Q = {q1, . . . , qn}, this formula is ∃X1 · · · ,∃Xn, (ψi ∧ ψt ∧ ψf ), where

ψi ≡ ∀x

first(x)⇒

∧
j6n

x ∈ Xj ⇒
∨

qi∈I,(qi,a,qj)∈δ

Qa(x)



ψt ≡ ∀x∀y

S(x, y)⇒

∧
j6n

y ∈ Xj ⇒
∨

(qi,a,qj)∈δ

x ∈ Xi ∧Qa(y)


ψf ≡ ∀x

last(x)⇒
∨
qj∈F

x ∈ Xj


where first(x) = ¬(∃y, S(y, x)) and last(x) = ¬(∃y, S(x, y)).
(⇒): For the converse, we only give a sketch of proof inspired from [3]. We
extend our interpretation to (Σ × 2V1 × 2V2)∗ such that a letter (a, U1, U2) in a
word w satisfied by a formula ψ (possibly with free variables) is such that all
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first-order variables that refer to the position of a are in U1 and second-order
variables which contain the position of a are in U2. We can then proceed by
induction on ψ. Because of closure properties of regular languages, only the cases
∃xψ′ and ∃Xψ′ matter. By induction hypothesis, the language defined by ψ′ is
recognized by a NFA A = (Σ× 2V1 × 2V2 , Q, q0, δ, F ), from which we build a DFA
A′ = (Σ×2V1×2V2 , Q×{0, 1}, (q0, 0), δ′, F ×{1}) where transitions are of the two
following form:

((q, u), (a, U1, U2), (q′, u)) ∈ δ′

where u ∈ {0, 1}, x 6∈ U1 and (q, (a, U1, U2), q′) ∈ δ; and

((q, 0), (a, U1 \ {x}, U2), (q′, 1)) ∈ δ′

where x ∈ U1 and (q, (a, U1, U2), q′) ∈ δ. Because of our modified interpretation,
it is easy to see that L(A′) = L(∃xψ′). Using a similar construction using U2

instead of U1, it can be shown that L(∃Xψ′) is also regular. ♦

To extend this result to traces, we introduce dependence graphs which have a
natural MSO interpretation.

Definition 6 Let (Σ, D) be a dependence alphabet. A dependence graph is (an
isomorphism class of) a node-labeled acyclic graph [V,E, λ] where

• V is a finite set of vertices

• E ⊆ V × V is an edge relation such that (V,E) is acyclic

• λ : V → Σ is a node labeling such that (λ(x), λ(y)) ∈ D if and only if
(x, y) ∈ E ∪ E−1 ∪ idV .

The set of dependence graphs G(Σ, D) is a monoid for the following product:

[V1 ] V2, E1 ] E2 ] {(x, y) ∈ V1 × V2 | (λ1(x), λ2(y)) ∈ D}, λ1 ] λ2]

where the unit element is the empty graph.

From a trace t = a1 · · · an ∈M(Σ, I), it is easy to build a dependence graph [V =
{1, . . . , n}, E, λ] ∈ G(Σ, D). We set λ(i) = ai, and (i, j) ∈ E ⇔ i < j∧(ai, aj) ∈ D.
In fact, M(Σ, I) ∼= G(Σ, D).

Example 4 Using the same independence alphabet as in example 2.1, the depen-
dence graph of the trace [abcdda]I is the following:

b

a

d

c

d

a

// UUUUUUUUUUUUUUUUUUUUUU

**LLLLLLLLLLL

%%

//

//

rrrrrrrrrrr

99 // OO
++

33
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For clarity and convenience, we often omit edges which can be obtained by tran-
sitivity. We may also omit the direction of edges. In this case, the graph reads
from left to right. For instance, the reduced representation of the above dependence
graph (also called Hasse diagram) is:

b

a

d− d

c a

LLLLLLLLLL rrrrrrrrrr

We now consider a MSO fragment with the following predicates:

(x, y) ∈ E, λ(x) = a with a ∈ Σ

and their obvious interpretation in G(Σ, D). Using the correspondence between
traces and dependence graphs, we can define the trace language defined by a
sentence.

Theorem 3 [4] Let T ⊆M(Σ, I) and K ⊆ LexNF .

1. K is MSO-defineable over Σ∗ if and only if, [K]I is MSO-definable over
M(Σ, I).

2. T is MSO-defineable over M(Σ, I) if and only if, ϕ−1(T ) is MSO-definable
over Σ∗.

Proof: 1. If t = [V,E, λ] is a trace and LNF (t) = a1 · · · an ∈ LexNF , each node
x ∈ V corresponds to one ai in LNF (t). We will give a FO formula lex(x, y) that
holds if and only if x is before y in lexicographic order. Once such a formula is
known, if ψ defines K, we can replace all predicates x < y in ψ with lex(x, y). We
obtain a formula ψ̂ such that w |= ψ ⇔ ϕ(w) |= ψ̂. The formula lex(x, y) can be
recursively expressed:

lex(x, y) = (x, y) ∈ E+

∨(λ(x) < λ(y) ∧ ¬lex(y, x))
∨(λ(y) < λ(x) ∧ ∃z, λ(x) < λ(z) ∧ lex(x, z) ∧ (z, y) ∈ E∗)

Where (x, y) ∈ E+ can be expressed as:

(x, y) ∈ E∨
∨

k6|Σ|−2

∃z1 · · · zk, (x, z1) ∈ E ∧

 ∧
1<i6k

(zi−1, zi) ∈ E

 ∧ (zk, y) ∈ E


But since the alphabet Σ is finite, we can unfold the recursion to obtain the desired
formula for lex(x, y).
2. If T is MSO-defineable, we can replace all predicates (x, y) ∈ E by the FO
formula x < y∧ (λ(x), λ(y)) ∈ D and all predicates λ(x) = a by Qa(x). We obtain
a sentence that defines the set of linearizations of traces in T . Conversely, because
of Ochmanski’s theorem, T = ϕ(ϕ−1(T ) ∩ LexNF ) and (1.) applies. ♦
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2.4 Rational trace languages

Recall that in free monoids, Kleene’s theorem states that Rec(M) = Rat(M).
This result does not hold in all non-free monoids. An important counter-example
of this fact is given on the monoid a∗× b∗ by the language (ab)∗: its commutative
closure is the non-regular language {w ∈ {a, b}∗ | |w|a = |w|b}.
Because regular expressions provide the easiest description of recognizable lan-
guages, one can wonder if it can be decided whether a regular expression over a
monoid represents a recognizable language or not. This question has been an-
swered in [5] by Sakarovitch in the case of trace monoids.

Theorem 4 Recognizability is decidable in Rat M(Σ, I) if and only if, I is tran-
sitive.

Although we will not give a complete proof of this theorem, some noteworthy
intermediate results deserve to be stated here, as they are related to some of the
problems we address in section 5.

Definition 7 If M and N are two monoids, the free product of M and N , denoted
M ∗ N , is the set of finite sequences (ui)i6n of elements alternating from M• to
N•, i.e. such that ui ∈M• ⇔ ui+1 ∈ N•, where M• stands for M \ {1M}.
We define alternating concatenation by induction as follows: (u1, . . . , up) ·
(v1, . . . , vq) is equal to:

1. (u1, . . . , up, v1, . . . , vq) if up and v1 belong to different monoids.

2. Else, (u1, . . . , upv1, . . . , vq) if upv1 6= 1.

3. (u1, . . . , up−1) · (v2, . . . , vq) otherwise.

M ∗ N is a monoid for alternating concatenation where the unit element is the
empty sequence.

Lemma 1 If I is transitive, then M(Σ, I) is isomorphic a free product of free
commutative monoids.

Proof: If I is transitive, connected components of the independence graph are
complete subgraphs and the induced connected subalphabets yield free commu-
tative monoids. Traces in M(Σ, I) can then be written as a dependent product
of commutative factors. Hence, M(Σ, I) is isomorphic to the free product of free
commutative monoids over those subalphabets. ♦

Because of this lemma, we can prove theorem 4 by showing it holds on free com-
mutative monoids, and that it is preserved by taking free products. We will focus
on the base case, which is attributed to Ginsburg and Spanier [6], although this
result is not explicitely given in their paper.
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Proposition 3 Recognizability is decidable in Rat M when M is the free commu-
tative monoid over Σ.

Proof: It suffices to show that the set of lexicographic forms, which are included
in a∗1a

∗
2 · · · a∗n if Σ = {a1, . . . , an}, is regular. To a regular expression over M, one

can associate through the Parikh mapping, a semilinear set of Nn, which are given
two finite sets C,P ⊂ Nn of constants and periods, the set of elements of the form
x = x0 + · · ·+ xm with x0 ∈ C and (xi)i6m is a finite sequence of periods.
It is proved in [6] that semilinears sets are exactly the sets of Nn that can be defined
by a Presburger formula over an adequate interpretation. But the recognizable
semilinear sets are those whose periods have exactly one non-zero component, a
property that is easily defined in Presburger arithmetic. ♦

3 Varieties of semigroups and languages

Only a limited introduction and a few results used later on are presented in this
section, which owes a lot to the survey by Jean-Éric Pin in [7]. The theory of
varieties originates in a renowned result by Schützenberger, who characterized
star-free languages using their syntactic monoids, namely, those that are finite and
aperiodic (i.e. group-free). This is in fact an instance of a general correspondence
between varieties of languages and varieties of semi-groups.

3.1 Algebraic definitions

A quasi-order is a reflexive and transitive relation. If R is a quasi-order, we can
define an associated equivalence relation S by xSy ⇔ xRy ∧ yRx. We say that a
relation R1 is coarser than R2 if R2 ⊆ R1.
A semigroup is a set with an internal associative operation. In particular, monoids
are semigroups with an identity element. If S is a semigroup, we define S1 as S if
S is a monoid and S ] {1} else, where 1 is a unit element.
An ordered semigroup is a semigroup with a stable order relation 6 (i.e. compat-
ible with the internal operation). A morphism of ordered semigroups ϕ : (S1,61

) → (S2,62) is a morphism of semigroups compatible with the order relation:
∀x, y ∈ (S1,61), x 61 y ⇒ ϕ(x) 62 ϕ(y).
Recall that a congruence in a semigroup is a stable equivalence relation. If S is a
semigroup and ∼ is a congruence, S/∼ is also a semigroup. A congruence in an
ordered semigroup (S,6) is a stable quasi-order � that is coarser than 6. If � is
a congruence and ∼ the associated equivalence relation, then (S/∼,6) is also an
ordered semigroup.
If ϕ is a morphism of (ordered) semigroups, the equivalence relation (quasi-order)
defined by x ∼ϕ y ⇔ ϕ(x) = ϕ(y) (resp. x �ϕ y ⇔ ϕ(x) 6 ϕ(y)) is a congruence.
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An order ideal of an ordered semigroup (S,6) is an ideal I ⊆ S of the semigroup
S (S1IS1 = I) such that if x 6 y and y ∈ I then x ∈ I. The order ideal generated
by an element x is the set x ↓ of all y 6 x. If S is a monoid, K ⊆ S and I is an
order ideal, then I−1K and KI−1 are also order ideals.
An element e ∈ S is an idempotent if e2 = e. If S is a finite semigroup and
s ∈ S, since the subsemigroup generated by s is also finite, there exists a unique
idempotent power of s which we denote sω, such that sω is idempotent.

Definition 8 Let ϕ : (S1,61) → (S2,62) be a morphism of ordered semigroups.
We say that Q ⊆ S1 is recognized by ϕ if there exists an order ideal P ⊆ S2 such
that Q = ϕ−1(P ).

Notice for instance that the congruence 61 recognizes all order ideals of S1. If
Q ⊆ S1 is an order ideal, we define the syntactic congruence �Q by:

u �Q v ⇐⇒ ∀x, y ∈ S, (xvy ∈ Q⇒ xuy ∈ Q)

It is the coarsest congruence of ordered semigroups that recognizes Q. The quo-
tient T/ �Q is an ordered semigroup called the ordered syntactic semigroup.
All recognizable languages can be recognized by an ordered semigroup. If (Q, δ, F )
is an automaton that recognizes L, the syntactic congruence �F defined above is
an order over the semigroup Q.

3.2 Varieties of semigroups

Definition 9 A variety of semigroups is a class of semigroups closed under taking
subsemigroups, quotients and direct products. A pseudovariety is a variety of finite
semigroups.

Varieties can be defined using identities. If Σ is an alphabet and u, v ∈ Σ+, we
say that a semigroup S satisfies the identity u = v (u 6 v) if for every morphism
of (ordered) semigroups ϕ : Σ+ → S one has ϕ(u) = ϕ(v) (ϕ(u) 6 ϕ(v)). It is
relatively easy to see that identities define varieties, but he converse is also true:

Theorem 5 [8] A class of (ordered) semigroups is a variety if and only if it can
be defined by a set of identities.

For instance, xy = yx defines the variety of commutative semigroups. Because we
are mainly interested in recognizable languages, we would like a similar theorem
for pseudovarieties. Such a theorem was given by Reiterman but as we shall see,
it requires some work:

Theorem 6 A class of (ordered) semigroups is a pseudovariety if and only if it
can be defined by a set of identities of Σ̂+.
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The difficulty of this theorem comes from the definition of Σ̂+. We say that
a semigroup S separates two words u, v ∈ Σ+ if there exists some semigroup
morphism ϕ : Σ+ → S such that ϕ(u) 6= ϕ(v). We now define:

r(u, v) = min{|S| | S is a finite semigroup that separates u and v}

It can be shown that d(u, v) = 2−r(u,v) is a metric that makes (Σ+, d) a topological
semigroup. We then define Σ̂+ as the completion of (Σ+, d). If we consider
finite semigroups as topological semigroups for the discrete metric, we say that
a finite semigroup S satisfies the identity u = v (u 6 v) whith u, v ∈ Σ̂+, if for
any continuous morphism of (ordered) semigroups ϕ : Σ̂+ → S, ϕ(u) = ϕ(v)
(ϕ(u) 6 ϕ(v)).
Beside words from Σ+, Σ̂+ contains limits of Cauchy sequences of words. An
important and useful example is given below:

Example 5 For all x ∈ Σ̂+, (xn!)n is a Cauchy sequence and its limit, denoted
xω, is an idempotent of Σ̂+.

In particular, if ϕ : Σ̂+ → S is a continuous morphism onto a finite semigroup,
ϕ(xω) is equal to the unique idempotent power ϕ(x)ω of ϕ(x). For instance, the
identity xωyω = yωxω defines the pseudovariety of semigroups where idempotents
commute.

3.3 Varieties of languages

A class of recognizable languages is a map C which associates to a finite alphabet
A a set C(A+) of recognizable languages over A+. In this section, we invastigate
the relationship between pseudovarieties of semigroups and classes of recognizable
languages, using the corresponance V→ V(A+) given by the syntactic semigroup.

Definition 10 A positive variety of languages is a class V of recognizable lan-
guages such that:

1. For every finite alphabet A, V(A+) is a positive boolean algebra

2. For all semigroup morphism ϕ : A+ → B+, L ∈ V(B+) implies ϕ−1(L) ∈
V(A+).

3. If L ∈ V(A+) and a ∈ A, then a−1L,La−1 ∈ V(A+).

A variety of languages is a positive variety closed under complementation.

The following theorem, due respectively to Eilenberg and Pin [9] states the rela-
tionship between varieties of languages and varieties of semigroups:

Theorem 7 V→ V is a one to one correspondence between varieties of (ordered)
finite semigroups and (positive) varieties of languages.
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Example 6 The variety of finite aperiodic semigroups defined by the identity
xω = xω+1 corresponds to the variety of star-free languages.
The variety of finite commutative groups Gcom defined by the identities xy = yx
and xωy = yxω = y corresponds to the boolean algebra of languages generated by
the family:

F (a, k, n) = {u ∈ A∗ | |u|a ≡ k mod n}

The variety of p-groups Gp defined by the identity x(pω) = 1 corresponds [10] to
the boolean algebra of languages generated by the family:

S(u, k, p) = {w ∈ A∗ |
(
w

u

)
≡ k mod p}

for u ∈ A∗, 0 6 k < p.

3.4 The positive variety W

This positive variety of language introduced in [11] is relevant to our topic because
we’ll show it is closed under total commutation.

Definition 11 The polynomial closure of a class of language L over Σ is the set
of languages that are finite unions of languages with the form L0a1L1a2 · · · anLn
whith ai ∈ Σ and Li ∈ L.

We denote by Pol(L) the polynomial closure of the variety of languages L. It is
a positive boolean algebra closed under quotients, product, shuffle and inverses of
morphisms.

Definition 12 The variety of ordered monoids W is defined as follows: (M,6
) ∈W if and only if, for every pair (a, b) of mutually inverse elements of M (i.e.
such that aba = a and bab = b) and any element z of the minimum ideal of the
submonoid generated by a and b,

(abzab)ω 6 ab

We denoteW the positive variety of languages associated to W. Although there is
no combinatorial description of languages in W, it is the unique maximal positive
variety that does not contain the language (ab)∗ with a 6= b. It is closed under
quotiens, residuals, inverse of morphisms, length-preserving morphisms, shuffle
and as we will see now, total commutation closure, and contains Com the variety
of commutative languages and Pol(G).

12



4 Commutative closures in G and W

This section summarizes the latest results presented by Gómez, Guaiana and Pin
at ICALP’08 [12] regarding the closure ofW and Pol(G) under total commutation
and partial commutation closures of polynomials of group languages for some
independence relations. Understanding and extending those results was the main
goal of the internship.
The proofs of these results often require some variants of Ramsey’s theorem, which
we recall below in a very generic form:

Theorem 8 In any finite coloring of a sufficiently large complete graph, there is
a monochromatic complete induced subgraph.

4.1 Group languages

In this section, L is a group language and ϕ : Σ∗ → G is the projection over
the syntactic group of L. We will need the following consequence of Ramsey’s
theorem:

Lemma 2 For every n > 0, there exists some N > 0 such that for all
u0, . . . , uN ∈ Σ∗, there exists a sequence 0 6 i0 < i1 < · · · < in 6 N such
that ϕ(ui0ui0+1 . . . ui1−1) = · · · = ϕ(uin−1uin−1+1 . . . uin−1) = 1.

Theorem 9 The commutative closure of a group language is regular.

Proof: To show that a commutative language is regular, it suffices to prove that
each letter of the alphabet is of finite index for the syntactic equivalence ∼[L]. Let
n = |G|, a ∈ Σ, g = ϕ(a) and N the integer given by the previous lemma. We
claim that aN ∼[L] a

N+n:

If xaNy ∈ [L], it is commutatively equivalent to some w ∈ L. Since gn = 1,
ϕ(wan) = ϕ(w), hence wan ∈ L. But wan is commutatively equivalent to
xaN+ny ∈ [L].
Conversely, if xaN+ny ∈ [L], it is commutatively equivalent to a word w =
w0aw1a · · ·wNawN+1 ∈ L. We apply the previous lemma to (wia)06i6N , yield-
ing a sequence 0 6 i0 < i1 < · · · < iN 6 N such that for all 0 6 j < N ,
ϕ(fj) = 1 where fj =

∏
ij6k<ij+1

wka. Let gj = fja
−1, s and t such that

w = s(
∏

06j<N fj)t and w′ = s(
∏

06j<N gj)t. We have ϕ(w) = ϕ(s)ϕ(t) and
ϕ(w′) = ϕ(s)ϕ(a)−nϕ(t) = ϕ(w), subsequently w′ ∈ L. But w′ is commutatively
equivalent to xaNy ∈ [L]. ♦

A consequence of this result is that Pol(G) is closed under total commutation,
while G is not. Taking the polynomial closure usually increases robustness with
respect to commutative closures. For instance, the varieties of piecewise testable
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languages and commutative languages J and Com are closed under total commu-
tation, while their polynomial closures are closed under partial commutation.
Given this result, one may wonder whether Pol(G) is closed under partial commu-
tation. A partial answer is given by Gómez, Guaiana and Pin while we provide
some new evidence in section 5. First, the answer is known for a special case of
dependence alphabet:

Theorem 10 If (Σ, D) is transitive, and L is a polynomial of group languages,
then [L]I ∈ Pol(G).

In this case, M is a direct product of free monoids, and one can show that the
closure [L]I is a finite union of direct products of polynomials of group languages
over M. L̄I is then the finite union of the shuffle product of those languages.
Finally, a last theorem regarding Pol(G) is given. It is in fact a consequence of
the above theorem and theorem 13 below. It applies to the case when I does not
contain any of the following two induced subgraphs:

• • • •
P4

•

•
• •LLLLLL

rrrrrr

Paw

Theorem 11 If I is (P4, Paw)-free and L ∈ Pol(G), then [L]I is recognizable.

4.2 Languages of W

The main result of this section is the closure of W under total commutation. In
fact, it suffices to show that the closure of any language in W is regular, since
Com ⊂ W. However, the proof of this claim is slightly subtle, since the only
description of W is given by the pseudoidentities (abzab)ω 6 ab for semigroups in
W.
In this section, we fix L ∈ W(Σ∗) and ϕ : Σ∗ → M is the syntactic projection,
with M ∈W.
We will need another consequence of Ramsey’s theorem:

Lemma 3 Let a ∈ Σ. For any n > 0, there exists some N(n) such that for all
u ∈ Σ∗, if |u|a > N(n), i.e. u = u0u1a · · ·unauN(n)+1, there exists an idemportent
e ∈M such that for all 1 6 i 6 n, ϕ(uia) = e.

And the following lemma for 2-letters alphabets:

Lemma 4 Let A = {a, b}. There is a word z ∈ A∗ such that |z|a = |z|b and for
any morphism γ : A∗ →M , γ(z) belongs to the minimal ideal of γ(A∗).

14



Proof: We define n = |M | and z a word that contains every word of length 6 n
as a factor such that |z|a = |z|b. Let JM denote the minimal ideal of γ(A∗). If
m ∈ JM , m is the image under γ of a factor u such that |u| 6 n. Hence, u is a
factor of z and γ(z) ∈Mγ(u)M = JM . ♦

Theorem 12 [L] is regular.

Proof: Let ω be the least integer such that for all x ∈M,xω is idempotent. We
will show that for all a ∈ Σ, there exists some N > 0 such that aN+ω 6[L] a

N . It
is a sufficient condition for regularity in free commutative monoids (see [13]). We
set the following: n = |M |, z ∈ A∗ is the word given by lemma 4, r = |z|a = |z|b,
n3 = ω(1 + r), n2 = nn3, n1 = 3n2 and N = N(n1) is the bound given by lemma
3.
Assume that xaNy ∈ [L]. There exists some u ∈ L such that u ∼ xaNy, so
|u|a > N and there is a factorization u = u0(

∏
16i6n1

uia)un1+1 with ϕ(uia) = e.
Now, since n1 = 3n2, we set for 1 6 i 6 n2 fi = u3i−2au3i−1 and gi = au3ia,
so that u = u0

∏
16i6n2

(figi)un1+1. Notice that ϕ(figi) = e, hence ϕ(figifi) =
e2ϕ(u3i−1) = ϕ(fi). Similarly, ϕ(gifigi) = ϕ(gi) and ϕ(fi), ϕ(gi) are mutually
inverse.
Since n2 = nn3, by the pigeonhole principle, there is a sequence i1 < · · · < in3

and some s ∈ M such that for all 1 6 j 6 n3, ϕ(fij ) = s. We set xj = fij and
yj = gij for 1 6 j 6 n3, and s̄ = ϕ(a)e = ϕ(gi) for all 1 6 i 6 n2 (hence ss̄ = e).
By isolating the indices ij in the factorization of u, we obtain a new factorization:

u = w0

n3∏
j=1

xjyjwj

with ϕ(wj) = e for j /∈ {0, n3} and ϕ(xj) = s, ϕ(yj) = s̄ for all j.
We now define the sequence (zk)k6ω as follows: zk is obtained from z by replacing
the ith occurence of a in z by xω+(k−1)r+i and the ith occurence of b in z by
yω+(k−1)r+i, for 1 6 i 6 r. This is legitimate since n1 = ω(1 + r) and |z|a = |z|b.
Notice that

∏ω
j=1 zj ∼

∏n3
j=ω+1 xjyj .

We now define x′j = u3ij−2a
2u3ij−1 and y′j = azju3ija for 1 6 j 6 n3, and:

u′ = w0

ω∏
j=1

x′jy
′
j

n3∏
j=1

wj

u′ is commutatively equivalent to xaN+ωy, since

ω∏
j=1

x′jy
′
j ∼ aω

ω∏
j=1

xjyj

ω∏
j=1

zj ∼ aω
n3∏
j=1

xjyj
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Let T be the submonoid of M generated by s and s̄, and γ : A∗ → T defined by
γ(a) = s and γ(b) = s̄. Lemma 4 states that γ(z) ∈ JT and by definition of W,
since ss̄ = e, (eγ(z)e)ω 6 e (here, ω denotes the idempotent power of eγ(z)e, but
it still divides the ω defined above, hence we does not dinstinguish the two).
By construction of zj , we have for all 1 6 j 6 ω ϕ(zj) = γ(z). Hence, ϕ(x′jy

′
j) =

es̄γ(z)e and one has finally:

ϕ(u′) = ϕ(w0)(es̄γ(e)e)ωϕ(wn3)

On the other hand, one can see that ϕ(u) = ϕ(w0)eϕ(wn3). Since s̄ ∈ T and
γ(z) ∈ JT , s̄γ(z) ∈ JT . Using the above reduction, ϕ(u′) 6 ϕ(u) with u ∈ L,
yielding u′ ∈ L and xaN+ωy ∈ [L]. ♦

A last theorem is given regarding the partial closure under a transitive commu-
tation relation. Notice that unlike the total commutation case, the fact that [L]I
is recognizable does not imply that it is in W. The closure of W under partial
commutation remains an open question.

Theorem 13 Let L ∈ W(Σ∗) and I be a trasitive independence relation. Then
[L]I is recognizable.

5 Closure under a P4 independence relation

In this section, we present the new results we obtained regarding the recognizabil-
ity of I-closures of group languages when I = P4. Traces in M(P4) have a very
specific block structure (the first two parallel blocks are optional):

b∗

(a+ c)∗a

d(b+ d)∗d

c∗

b∗

a(a+ c)∗a

;;;;;;; ������

· · ·

· · ·

5.1 Closures of S(u, k, n)

Our starting point for this study was the family S(u, k, n) defined above that
generates the variety of p-group and nilpotent languages. We obtained two partial
results for this family of languages.

Proposition 4 [S(abcd, 1, 2)]I is regular

Proof: Let us start by assuming that a trace t contains the factor
b
c

(that is to

say, a b and a c in parallel). Then, we have the following cases:
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1. b is followed by an odd number of d’s, and c is preceded by an odd number
of a’s:

#a ≡ 1[2]
#d ≡ 1[2]

c
b

jjjjjjjj

TTTTTTTT jjjjjjjj

TTTTTTTT

Consider the two linearizations u1 = xbcy and u2 = xcby, where |x|a ≡
1[2] and |y|d ≡ 1[2]. Then,

(
u1

abcd

)
≡
(
u2

abcd

)
+ 1 mod 2. Regardless of how

other abcd subwords can be formed from the trace, t ∈ [S(abcd, 1, 2)]I since
commuting b and c switches the parity of the number of occurences in the
linearization. We call such situations flipping cases.

2. Otherwise, b and c are colored with the parity of following d’s (respectively,
preceding a’s):

#a ≡ i[2]
#d ≡ j[2]

ci

bj

jjjjjjjj

TTTTTTTT jjjjjjjj

TTTTTTTT

Commuting b0 and c1, b1 and c0 or b0 and c0 doesn’t affect the parity of
occurences of abcd.

Assume now that t contains the factor
a
b
. The following cases may occur:

3. If t contains the subtrace:

b

a

d

cJJJJJJJJ

∗

∗
∗

in other words t = t1
(
a
b

)
t2
(
c
d

)
t3. Let x1, x2, x3 be any linearizations of t1,

t2, t3 and u = x1abx2, v = x2cdx3.

Notice that
(
ucdx3

abcd

)
≡
(
udcx3

abcd

)
+ 1 mod 2 and

(
x1abv
abcd

)
≡
(
x1bav
abcd

)
+ 1 mod 2.

Hence, this is a flipping case for any t1, t2, t3 ∈M.

4. If a is followed by an odd number of occurrences of the subtrace c ∗— d (that
is, a has no c and d in parallel in its future, thus we can count only subtraces
cd after a such that c and d are ordered):

b

a
jjjjjjjj

JJJJJJJJJ
#(c

∗
− d) ≡ 1[2]

we clearly have a flipping case.

5. If a is followed by an even number of occurences of the subtrace c
∗— d,

a’s are colored using this parity and commuting a0 and b won’t change the
membership to L of any linearization of t.
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Finally, when t contains the factor
c
d
, we obtain symmetric cases 6, 7 and 8 that

are the counterparts of cases 3, 4 and 5.
Each of the flipping cases 1,3,4,6,7 described above is recognizable. For instance
cases 1 and 3 yield the following recognizable trace languages:

L1 = M1
a bcM1

d

L3 = M abM cdM

with M1
a and M1

d resp., denoting the set of traces containing an odd number of a’s
and d’s, resp. (w.l.o.g. we write recognizable trace languages instead of I-closed
regular languages, which are equivalent notions).
Once the flipping cases are dealt with, we can assume we are un-
der the conditions of cases 2, 5 and 8. Our alphabet is now Σ′ =
{a0, a1, b0, b1, c0, c1, d0, d1}, and the independence relation is (the symmetric clo-
sure of) I ′ = {(a0, b0), (a0, b1), (b0, c0), (b0, c1), (b1, c0), (d0, c0), (d0, c1)}. We have
shown that χ(S(abcd, 1, 2) \ Flip) with Flip = L1 ∪ L3 ∪ L4 ∪ L6 ∪ L7, is I ′-closed
– where χ is the coloring defined in 2, 5, 8. Let w ∈ [S(abcd, 1, 2)]I \ Flip. Thus,
w ≡I v for some v ∈ S(abcd, 1, 2) \ Flip. We have also χ(w) ≡I′ χ(v), thus
w ∈ S(abcd, 1, 2) too.
We obtain the claimed result:

[S(abcd, 1, 2)]I = Flip ∪ S(abcd, 1, 2)

♦

Using this idea, we proved a slightly more general result: for any independence
relation I and for any u ∈ Σ∗ such that |u|ab + |u|ba 6 1 for each (a, b) ∈ I, a
property we’ll abbreviate to ℘, the language [S(u, 1, 2)]I is regular.

Proposition 5 Let u ∈ A∗ be such that ℘ is satisfied. A trace t is in the I-closure
of S(u, r, 2) if and only if either one of the following conditions is satisfied:

1. There exists a factorization u = xaby such that (a, b) ∈ I, and a factorization
t = t1abt2 such that t1 ∈ [S(x, 1, 2)]I and t2 ∈ [S(y, 1, 2)]I .

2. ϕ−1(t) ⊆ S(u, 1, 2)

Proof: Clearly, the second condition is sufficient. Assuming 1, there exist some
v ∈ S(x, 1, 2), z ∈ S(y, 1, 2) such that t1 = [v]I and t2 = [z]I . Let w = vabz and
w′ = vbaz. Assume there is a subword xaby of w that contains our highlighted
(a, b) pair. Since xaby is the only factorization of u containing (a, b) ∈ I, this
subword can be split into a subword x of v and a subword y of z, thus(

w

u

)
≡
(
w′

u

)
+
(
v

x

)(
z

y

)
≡
(
w′

u

)
+ 1 mod 2
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Notice that this sentence is false when there are multiple occurences of the pair
(a, b) in u. For instance,

(
aaba
aba

)
=
(
abaa
aba

)
.

Conversely, assume that t ∈ [S(u, 1, 2)]I and suppose we exclude the first case.
There exists some v ∈ S(u, 1, 2) such that t = [v]I . If v = wabz is a factorization
of v with (a, b) ∈ I, we claim that wbaz ∈ S(u, 1, 2).

• If ab does not appear in u, commuting a and b in v will have no effect.

• Otherwise, let u = xaby be any factorization containing ab. Since we ex-
cluded the first case, either w ∈ S(x, 0, 2) or z ∈ S(y, 0, 2). Either way,(

wabz

u

)
≡
(
wbaz

u

)
mod 2

Hence, since the claim holds for any factorization containing a pair of commuting
letters, ϕ−1(t) ⊆ S(u, 1, 2). ♦

Proposition 6 For each u ∈ Σ∗ that satisfies ℘, [S(u, 1, 2)]I is regular.

Proof: We proceed by induction on |u|. If u is a single letter, the proposition is
trivial. Otherwise, proposition 2 yields

[S(u, 1, 2)]I = S(u, 1, 2) ∪
⋃

u=xaby

(a,b)∈I

[S(x, 1, 2)]Iab[S(y, 1, 2)]I

♦

Unfortunately, there doesn’t seem to be a simple generalization to any u ∈ A∗

using this approach. Our attempt to index the occurences of each letters in u in
decreasing order, yielding a word ū ∈ B∗ having all its letters distinct has proved
unsuccessful. Using the homomorphism

h :
A∗ −→ B∗

a 7−→ a1 · · · a|u|a

it can be shown that t ∈ [S(u, r, 2)]I ⇒ h(t) ∈ [S(ū, r, 2)]I , but the converse does
not hold: if I = a—b, u = aba and t = a—c—

(
a
b

)
—c—a, a1a2ca1b1a2ca1a2 is an

odd linearization of h(t) (i.e it has an odd number of occurences of the subword
ū = a2b1a1) whereas all linearizations of t are even.

5.2 P4-closures of group languages

Using a more algebraic approach and relying on theorem 11, we proved a much
more general result. If A ⊆ Σ, we will denote ∼A the commutation equivalence
over the subgraph of (Σ, I) defined by A and MA = Σ∗/∼A. In this section, L is
a group language and its syntactic group is denoted G.
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Definition 13 We call a distribution of t a trace factorization t =
t0at

1
bct

0
dt

2
bct

1
at

3
bc . . . in accordance with the following scheme:

(a+ c)∗a

� �
b∗ b∗

d(b+ d)∗d

� � �
c∗c∗ c∗ a(a+ c)∗a

� � �
b∗b∗ b∗

;;;;;;; ������ 333333

d(b+ d)∗d

� �
c∗c∗

���� 5555 				

t0a t1bc t0d t2bc t1a t3bc t1d

Each group of b’s in parallel with an a-block and each group of c’s in parallel with
a d-block is distributed between the a or c block and two surrounding bc-blocks.

Proposition 7 A trace t is in [L]I if and only if, there is a distribution of t such
that:

1. For all a-block tia, there exists some gi ∈ G such that tia ∈ [ϕ−1(gi)]Id ∩Ma,b,c

where Id = {(a, b), (a, c)} ∪ {(x, d), x ∈ {a, b, c}}.

2. For all d-block tid, there exists some hi ∈ G such that tid ∈ [ϕ−1(hi)]Ia∩Mb,c,d

where Ia = {(b, c), (c, d)} ∪ {(a, x), x ∈ {b, c, d}}.

3. For all bc-block tibc, there exists some fi ∈ G such that tibc ∈ [ϕ−1(fi)] ∩Mb,c

where [ · ] denotes the closure under total commutation.

4.
∏
gif2i+1hif2i+2 ∈ ϕ(L) (where missing blocks have their corresponding ele-

ment set to 1G).

Proof: (⇒): Because of the structure of traces in M, a linearization of t corre-
sponds to a unique distribution. If t ∈ [L]I , there exists a linearization w ∈ L,
and the associated distribution satisfies condition 4. Furthermore, if s is a block
of the distribution, the corresponding factor v of w is such that ϕ(v) = s, hence
conditions 1—3 are satisfied.
(⇐): the actual sufficient condition for a block s on a subalphabet P associated to
an element g ∈ G is whether s ∈ [ϕ−1(g)∩P ∗](P,I). If this is the case for all blocks,
condition 4 implies that t can be globally linearized into a word of L. However,
since we want to use the theorem for polynomials of group languages, notice that
this is equivalent to s ∈ [ϕ−1(g)]C(P )∩MP where C(P ) = (I ∩P ×P )∪{(u, v) |u ∈
Σ \ P, v ∈ Σ \ {u}}. ♦

Theorem 14 [L]I is recognizable.

Proof: The existence of a distribution is MSO-defineable. Let n = |G|. We will
only give some fragments instead of a full sentence. For instance, the formulae
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that define an a-block and the existence of a monochromatic b-distribution in an
a-block are given bellow:

A(x, y) ≡ λ(x) = a ∧ λ(y) = a ∧
∀z((x, z) ∈ E ∧ (z, y) ∈ E)⇒ (λ(z) = a ∨ λ(z) = c)

Alin(x1, y1, y2, x2) ≡ λ(x1) = d ∧ λ(x2) = d ∧A(y1, y2) ∧
Mono(x1, y1) ∧Mono(y1, y2) ∧Mono(y2, x2) ∧
∃z1, z2(x1, z1) ∈ E ∧ (z2, x2) ∈ E ∧Mono(z1, z2) ∧
λ(z1) = b ∧ λ(z2) = b

Similar formulas are easy to obtain for other types of blocks. The guessing of the
group element associated with a block is done with a coloring (disjoint position
sets X1, . . . Xn), in which it it possible to include whether tia ∈ [ϕ−1(gi)]Id ∩Ma,b,c

(because ϕ−1(gi) is a group language and Id is (P4, Paw)-free, hence it is defineable
by an MSO sentence). The condition on

∏
f2igif2i+1hi can be tested by “chaining”

our coloring, i.e. by storing the color of the product of all the group elements
corresponding to all the following blocks in each letter of the current block. ♦

6 Final words

The soundness of the algebraic framework of the theory of recognizable languages
allows some impressive results like theorem 12. Theorem 14 is, compared to propo-
sition 6, another example of how the combinatorial difficuly can be completly
eliminated by focusing on the structure of the trace monoid.
A natural continuation of theorem 14 would be to consider closured under cographs
(which are exactly the P4-free graphs). Unfortunately, we lacked time to properly
address this question, and it remains unanswered for now.
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[7] Jean-Éric Pin. Syntactic semigroups, pages 679–746. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[8] J. Almeida. Finite Semigroups and Universal Algebra. World Scientific, Sin-
gapore, 1995.
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