
Keys to the Cloud: Formal Analysis and

Concrete Attacks on Encrypted Web Storage

Chetan Bansal1, Karthikeyan Bhargavan2,
Antoine Delignat-Lavaud2, and Sergio Maffeis3,�

1 BITS Pilani-Goa
2 INRIA Paris-Rocquencourt
3 Imperial College London

Abstract. To protect sensitive user data against server-side attacks, a
number of security-conscious web applications have turned to client-side
encryption, where only encrypted user data is ever stored in the cloud.
We formally investigate the security of a number of such applications, in-
cluding password managers, cloud storage providers, an e-voting website
and a conference management system. We find that their security relies
on both their use of cryptography and the way it combines with com-
mon web security mechanisms as implemented in the browser. We model
these applications using the WebSpi web security library for ProVerif,
we discuss novel attacks found by automated formal analysis, and we
propose robust countermeasures.

Keywords: Web Security, Formal Methods, Protocol Verification.

1 Application-Level Cryptography on the Web

Many web users routinely store sensitive data online, such as bank accounts,
health records and private correspondence. Servers that store such data are a
tempting target for cybercrime: a single attack can yield valuable data, such
as credit card numbers, for millions of users. As websites move to using cloud-
based data storage, the confidentiality of user data and the trustworthiness of
the hosting servers has come further into question.

Transport layer security (TLS) as provided by HTTPS [21] does not fully
address these concerns. TLS protects sensitive data over the wire as it travels
between a browser and a website. However, it does not protect data at rest, when
it is stored on the client or the server, where it can be accessed by an attacker
stealing a laptop or hacking into a server. To protect from these risks, web
applications use a combination of application-level cryptography and browser-
based security mechanisms to securely handle user data. Our goal is to formally
investigate the effectiveness of these mechanisms and their concrete deployments.

Application-level cryptography. To protect data from hackers, websites like Drop-
box [2] systematically encrypt all files before storing them on the cloud. However,

� Maffeis is supported by EPSRC grant EP/I004246/1.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 126–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Keys to the Cloud 127

since the decryption keys must be accessible to the website, this architecture still
leaves user data vulnerable to dishonest administrators and website vulnerabil-
ities. A more secure alternative, used by storage services like SpiderOak and
password managers like 1Password, is client-side encryption: encrypt all data on
the client before uploading it to the website. Using sophisticated cryptographic
mechanisms, the server can still perform limited computations on the encrypted
data [19]. For example, web applications such as ConfiChair [7] and Helios [4]
combine client-side encryption with server-side zero-knowledge constructions to
achieve stronger user privacy goals.

These application-level cryptographic mechanisms deserve close formal anal-
ysis, lest they provide a false sense of security to their users. In particular, it is
necessary to examine not just the cryptographic details (i.e. what is encrypted),
but also how the decryption keys are managed on the the browser.

Browser-based security mechanisms. Even with client-side encryption, the server
is still responsible for access control to the data it stores. Web authentication
and authorization typically rely on password-based login forms. Some websites
use single sign-on protocols like OAuth [17] to delegate user authentication to
third parties. After login, the user’s session is managed using cookies known
only to the browser and server. JavaScript is then used to interact with the user,
make AJAX requests to download data over HTTPS, store secrets in HTML5
local storage, and present decrypted data to the user.

The security of the application thus depends on both the server and on
browser-based mechanisms like cookies and JavaScript. That is dangerous, con-
sidering the prevalence of web vulnerabilities such as Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), open redirectors or phishing, even on ma-
jor websites. In previous work, our survey of encrypted storage services [11]
uncovered many such vulnerabilities and showed how can be exploited to bypass
both client-side and server-side cryptographic protections. However, these at-
tacks were found by manual inspection aided by tracing tools. Can we search for
such attacks systematically and exhaustively? More importantly, can we eval-
uate any proposed countermeasures to ensure that they are not vulnerable to
variations of the same attacks? In response to both these questions, we follow
[8] in advocating the automated formal analysis of web security mechanisms.

Formal analysis of cryptographic web applications. Standard cryptographic at-
tacker models employ a crude notion of compromise: if a client or server per-
forms any action outside the description of the protocol, it is considered com-
promised. This characterization is too strong for web applications which may
contain dozens of pages, among which only a few are security-sensitive. We need
a new attacker model that allows honest websites to have some vulnerable pages.

In previous work [8], we proposed WebSpi, a formal model of web attackers
and browser-based security mechanisms, written as a library for ProVerif [12].
We used WebSpi to analyze web authorization and single sign-on applications
against a limited set of web attacks including CSRF and open redirectors. Here,



128 C. Bansal et al.

Table 1. Example encrypted web storage applications

Name Key Derivation Encryption Integrity Metadata Integrity Sharing

Wuala PBKDF2 AES, RSA HMAC � �(PKI)

SpiderOak PBKDF2 AES, RSA HMAC � �

BoxCryptor PBKDF2 AES None � �

CloudFogger PBKDF2 AES, RSA None � �(PKI)

1Password PBKDF2-SHA1 AES None � �

LastPass PBKDF2-SHA256 AES, RSA None � �

PassPack SHA256 AES None � �

RoboForm PBKDF2 AES, DES None � �

Clipperz SHA256 AES SHA256 � �

ConfiChair PBKDF2 RSA, AES SHA1 � �(PKI)
Helios N/A El Gamal SHA256 Zero-Knowledge Proof N/A

we extend WebSpi to cover additional browser mechanisms such as local storage,
AJAX, and the associated same origin policy, as well as to account for new
attacks such as XSS, insecure cookies or JSONP-based CSRF.

The analysis of [8] did not address cryptographic issues. Here we extend Web-
Spi to study a series of commercial and academic cryptographic web applications.
Our analysis reveals several new web-based attacks that expose flaws in their
cryptographic designs, and formally reconstructs attacks previously reported
in [11]. These attacks have been responsibly disclosed, and most were fixed in
accordance with our suggestions. Our formal analysis suggests new countermea-
sures that are more robust in the face of web vulnerabilities. We verify these
designs against attackers modeled in WebSpi. In summary, our work extends the
state of the art by combining symbolic cryptographic protocol analysis with a
realistic web attacker model. All the WebSpi scripts referenced in this paper are
available online at http://prosecco.inria.fr/webspi/.

Related Work. A number of cryptographic protocols underlying real-world web
applications have been verified for sophisticated security properties. Closely re-
lated to this paper are the symbolic analyses of ConfiChair [7], Helios [4], and
Plutus [13]. However, none of these consider web attacks like CSRF and XSS, and
as we show for ConfiChair and Helios, their security guarantees can be broken
by such standard web vulnerabilities.

Various attacks have previously been found on encrypted storage applications:
on their cryptographic design [10], on their web deployment [5], and on combi-
nations of the two [11]. Such attacks are typically found using ad hoc tracing
tools, and these works do not offer any positive guarantees for countermeasures.
These attacks serve as motivation for our fomal analysis.

Several works propose formal models of browser-based security mechanisms
[24,15,6,16]. Closely related to our work are the models of [6], which capture
many of the same web vulnerabilities, and can be analyzed using Alloy [18]. How-
ever, they do not generally consider cryptography, whereas our use of ProVerif
enables a combination of cryptographic and web security analysis.

http://prosecco.inria.fr/webspi/


Keys to the Cloud 129

2 Encrypted Web Storage Applications

We study encrypted web storage, a
core functionality of many security-
conscious web applications. More
specifically, we evaluate the design,
implementation, and use of client-side
encryption in the web applications of
Table 1. The general architecture of
such applications is depicted on the
right. They fall in three categories:
File storage services, such as Wuala
and SpiderOak, offer a remote en-
crypted backup folder synchronized across various user devices with options to
share folders and files with non-registered users by sending web links.

Password managers, such as 1Password and LastPass, integrate with a browser
to store user login credentials for different websites. When the user browses to
a known website, the password manager offers to automatically fill in the login
form. The password database is kept encrypted on the client and backed up re-
motely, and can be synchronized across the user’s devices.

Privacy-conscious websites, such as ConfiChair for conference management and
Helios for electronic voting use client-side encryption to protect users against
powerful attackers who may obtain control over the website itself.

All these applications implement an encrypted storage protocol and then use
it to build more advanced features. We begin by describing one such protocol.

2.1 An Encrypted Storage Protocol

Suppose a user u has some sensitive data db with metadata m that she wishes to
backup on a storage server. For example, db may be a local file with name m, or
db may contain a password for the website m. u uses some client software a to
communicate with the server b. When u creates or modifies db, a encrypts the
data and sends it to the storage server. Periodically, a downloads and synchro-
nizes its local copy of the encrypted db with the storage server. u does not know
or trust the storage server, we assume it is somewhere in the cloud. We describe
these two protocols below.

Notation. The cryptographic primitives crypt and decrypt represent symmetric
encryption and decryption (e.g. AES in CBC mode); mac represents MACing
(e.g. HMAC with SHA256); kdf represents password-based key derivation (e.g.
PBKDF2). We model a TLS channel c with some server b as follows: an outgoing
messagem is denoted TLS→b

c (m) and an incoming message is denoted TLS←b
c (m).

Update and Synchronization protocols. Assume that u and b share a secret
secretu,b and that a has a local encryption key K and MAC key K ′ that it
never sends to the server. These three secrets are stored on the client and may
be encrypted under a password for additional security.



130 C. Bansal et al.

Update Cloud Storage: Update(u,m,db)

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a → b TLS→b

c (Authenticate(u, secretu,b))
b verifies secretu,b and associates c with u
a updates encdb to (m,e=crypt K db,h=mac K ′ (m,e))

2. a → b TLS→b
c (Upload(m, e, h))

b updates storage[u] to (m,e,h)

In the protocol above, Authenticate(a, secreta,b) denotes a tagged message re-
questing authentication of user u with password secretu,b. Similarly, message
Upload(m, e, h) requests to upload the metadata m with the encryption e of the
database db under the key K, and the MAC h of m and e under the MAC key
K ′. Hence, this protocol protects the confidentiality and ciphertext integrity of
db, and the metadata integrity of m. Some applications in Table 1 do not provide
metadata integrity; in Section 4.3 we show how this leads to a password recovery
attack on 1Password.

The user data db is stored encrypted on the client. If an authorized user
requests to read it, the client a will verify the MAC, decrypt encdb, and display
the plaintext. The synchronization protocol authenticates the user, downloads
the most recent copy of the encrypted database, and verifies its integrity.

Synchronize with Cloud Storage: Synchronize(u)

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a → b TLS→b

c (Authenticate(u, secretu,b))
b verifies secretu,b and associates c with u
b retrieves storage[u] = (m,e,h)

3. b → a TLS←b
c (Download(m, e, h))

a checks that mac K ′ (m, e) = h

a updates encdb to (m,e,h)

Attacker Model. The protocols described above protect the user from com-
promised servers, network attackers and stolen devices. In particular: an attacker
gaining control of a storage server, or of a device on which the client applica-
tion is installed but not running, must be unable to recover any plaintext or
information about user credentials; a user must be able to detect any tampering
with the stored data; a network attacker must be unable to eavesdrop or tam-
per with communications through the cloud. Under reasonable assumptions on
the cryptographic primitives, one can show that the reference protocol described
above preserves the confidentiality of user data (see, for example [7]). However,
such proofs do not reflect the actual deployment of web-based encrypted storage
applications, leading to attacks that break the stated security goals, despite the
formal verification of their cryptographic protocols.



Keys to the Cloud 131

2.2 Deploying Encrypted Storage Protocols over the Web

Although encrypted storage protocols can be deployed using custom clients and
servers, a big advantage of deploying it through a website is portability. The
storage service may then be accessed from any device that has a web browser
without the need for platform-specific software. This raises the challenge that
the developer now needs to consider additional web-based attack vectors that
affect websites and browsers. Consider an encrypted storage protocol where the
client a is a browser and the server b is a website. We discuss the main design
questions raised by this deployment architecture.

Password-based Key Derivation. Browser a must be able to obtain the secret
secretu,b to authenticate to the server. Then it must be able to obtain the en-
cryption key K and MAC key K ′. The usual solution is that all three of these
secrets are derived from a passphrase, sometimes called a master password. The
key derivation algorithm (e.g. PBKDF2) typically requires a salt and an iteration
count. Choosing a high iteration count stretches the entropy of the passphrase by
making brute-force attacks more expensive, and choosing different salts for each
user reduces the effectiveness of pre-computed tables [20]. In the following, we
assume that each of the three secrets is derived with a different user-dependent
constant (Au, Bu, Cu) and a high iteration count (iter).

User Authentication and Cookie-based Sessions. To access a storage service a user
must log in with the secret secretu,b derived from her passphrase. Upon login,
a session is created on the server and associated with a fresh session identifier
sidu,b sent back to the browser as a cookie. The browser sends back the cookie
with every subsequent request, so the server can correlate all the user actions
on the website even if these actions were taken in separate tabs, over different
HTTPS connections. This login protocol can be described as follows.

Web Login and Key Derivation: Login(u,p,b)

user on browser a navigates to https://b/login

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a → b TLS→b

c (Request(/login))
2. b → a TLS←b

c (Response(LoginForm))
user enters username u and passphrase p
a derives and stores K = kdf p Au iter, K ′ = kdf p Bu iter

a derives secretu,b = kdf p Cu iter

3. a → b TLS→b
c (Request(/login, user = u&secret =secretu,b))

b verifies that secret = secretu,b
b generates a cookie sidu,b
b stores (sidu,b, u)

4. b → a TLS←b
c (Response[sidu,b](LoginSuccess()))

a stores (b, sidu,b)

We write Response[sidu,b](LoginSuccess()) to mean that the server sends an HTTP
response with a header containing the cookie sidu,b and a body containing the

https://b/login
/login
/login


132 C. Bansal et al.

page representing successful login. All subsequent requests from the browser to
the server will have this cookie attached to it, written Request[sidu,b](· · · ).
Browser-based Cryptography and Key Storage. The login protocol above and the
subsequent actions of the client role a of the encrypted storage protocol require
a to generate keys, store them, and use them in cryptographic operations. To
execute this logic in a browser, typical websites use JavaScript, either as a script
embedded in web pages or in an isolated browser extension. In some applications,
the cryptography is also implemented in JavaScript (e.g. LastPass). In others,
the cryptography is provided by a Java applet but invoked through JavaScript
(e.g. ConfiChair). In both cases, the keys must be stored in a location accessible
to the script. Sometimes such cryptographic materials are stored in the browser’s
localStorage which provides a private storage area to each website and to each
browser extension.

When the performance or reliability of JavaScript is considered inadequate,
a few storage applications (such as SpiderOak) instead cache decryption keys
on the server and perform all decryptions on the server side; these keys are
discarded upon logout. In the rest of this paper, we generally assume that all
cryptography is implemented on the client unless explicitly specified.

Releasing plaintext to authorized websites. In addition to update and synchro-
nize, some storage services offer advanced sharing mechanisms. For example,
password managers offer a form fill feature whereby user data is automatically
retrieved, decrypted, and released to authorized websites. This feature is imple-
mented by a browser extension or bookmarklet and activated when a user visits
a login page; the extension automatically fills the login form with the user’s cre-
dentials for that page. In the protocol description below, the encrypted storage
client holding the database and its decryption keys is the browser extension x.

Automatic Form Filling for Web Login: Fill(b)

user on browser a navigates to https://b/login

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a → b TLS→b

c (Request(/login))
2. b → a TLS←b

c (Response(LoginForm))
a triggers browser extension x with the current page hostname

3. a → x Lookup(b)
x looks up encdb for (b,e,h)
x checks that mac K ′ (b, e) = h

x computes (u, p) = decrypt K e
4. x → a Result(b, u, p)

a fills LoginForm with (u, p)

Sharing with a web link. File storage services often allow a user to share a file
or folder with others, even if they do not have an account with the service. This
works by sending the recipient a web link that contains within it the decryption
key for the shared file. The receiver can access the file by following the link.

https://b/login
/login


Keys to the Cloud 133

URL-based File Sharing: Share(u,m)

user u sends to v the link U=https://b/?user=u&file=m&key=K
user v on browser a navigates to U

1. a → b TLS→b
c (Request[](U))

b retrieves storage[u] = (m, e, h)
b decrypts f = decrypt K e

2. b → a TLS←b
c (Response[](Download(f)))

Sending decryption keys in plaintext links is clearly a security risk since the key
can easily be leaked. As a result, even services that offer link-based sharing do
not use the same key for shared files as they do for private files. For instance,
SpiderOak creates a fresh encryption key for each shared folder and re-encrypts
its contents. When the owner needs to access and decrypt her own shared files,
she must first retrieve this shared key from the server. We model this protocol in
more detail in Section 4. Other applications such as Wuala or CloudFogger use
a more secure sharing scheme that relies on a public key infrastructure, allowing
the decryption key to be sent wrapped under the recipient’s public key.

2.3 Web Attacker Model

An encrypted storage application that uses JavaScript and cookie-based sessions
is exposed to, and must protect against, a range of web attack vectors.

Code delivery. In typical website deployments, the JavaScript code that performs
client-side encryption is itself downloaded from the web. If the attacker controls
the server hosting the JavaScript, he may corrupt the application code in order
to leak keys back to himself. Alternatively, if the code is downloaded over plain
HTTP, a network attacker may tamper with the script.

XSS. In its simplest form, an attacker may be able to exploit unsanitized user
input in the application to inject JavaScript that gets inlined in the website
HTML and run along with trusted JavaScript. This may give the attacker com-
plete control over a web page in the browser and to all cryptographic materials
available to that page. Even carefully written security-conscious applications,
such as Dropbox, LastPass, and ConfiChair, may still contain such weaknesses,
as we show in Section 5. New browser security mechanisms are being proposed
to address this issue [23].

Session Hijacking. Once a session is established, the associated cookie is the only
proof of authentication for further actions. If an attacker gets hold of the session
cookie, he can perform the same set of operations with the server as the user. In
Section 5 we describe attacks of this kind that we found in several applications
(including ConfiChair), even if they normally use HTTPS. A solution is for
applications to set the cookie in secure mode, disallowing the browser to send it
over an unencrypted connection.

CSRF. When an action can be triggered by accessing some URL, for example
changing the current user’s email address or his role in the session, a malicious

https://b/?user=
&file=
&key=


134 C. Bansal et al.

site can force its users to access this URL and perform the action on their
behalf, with attacker-controlled parameters. Although it is up to the application
to prevent these kind of attacks, various varieties of CSRF remain common, even
in security-oriented web services [9]. A common solution is to use an unguessable
authorization token bound to the user session and require it to be sent with every
security-sensitive request.

Phishing and Open Redirectors. Features involving third parties may introduce
new attack vectors. For instance, in the automatic form filling protocol above,
an untrusted website may try feeding the extension a fake URL instead of the le-
gitimate login URL, to trick the extension into retrieving the user’s password for
a different website. Similarly, open redirectors such as URL http://b/?redir=x,
that redirect the user to an external website x, facilitate phishing attacks where
the website x may fool users into thinking that they are visiting a page on b

when in fact they are on website x.
In summary, the design of cryptographic web applications must account for

prevalent web vulnerabilities, not just the formal cryptographic attacker of Sec-
tion 2.1. Next, we introduce our methodology for analyzing such applications.

3 Automated Verification of Web Cryptography

We describe the WebSpi library for ProVerif, and discuss how it is used to model
and verify web applications. We show our extensions to WebSpi to model new
JavaScript-based attacks. For details on ProVerif, see the official manual [14].

3.1 Processes

The language underlying ProVerif is a variant of applied pi-calculus [3]. Compu-
tations are described as the interaction of message-passing processes that com-
municate over asynchronous named channels. Knowing the name of a channel
is enough to be able to send or receive messages on it. The name of a channel
defined as private to a process cannot be guessed by other processes, so the cre-
ator controls its scope (that can be extended by sending the channel name to
other processes). Processes have access to local databases where they can store
and retrieve messages. Atomic messages, typically ranged over by a, b, c, h, k, ...
are tokens of basic types. Basic types are channels, bitstrings or user-defined.
Messages can be composed by pairing (M,N) or by applying n-ary data con-
structors and destructors f(M1, ...,Mn). Constructors and destructors are par-
ticularly useful for cryptography, as described below. Pattern matching = M is
extensively used to parse messages.

ProVerif models symbolic cryptography: cryptographic algorithms are treated
as perfect black-boxes whose properties are abstractly encoded using construc-
tors and destructors. Consider authenticated encryption:

fun aenc(bitstring,symkey): bitstring.
reduc forall b:bitstring,k:symkey; adec(aenc(b,k),k) = b.

http://b/?redir=x
x
x
b
x


Keys to the Cloud 135

Given a bit-string b and a symmetric key k, the term aenc(b,k) stands for the
bitstring obtained by encrypting b under k. The destructor adec, given an au-
thenticated encryption and the original symmetric key, evaluates to the original
bit-string b. ProVerif constructors are collision-free (one-one) functions and are,
by default, only reversible if equipped with a corresponding destructor. Hence,
MACs and hashes are modeled as irreversible constructors, and asymmetric cryp-
tography is modeled using public and private keys:

fun hash(bitstring) : bitstring.
fun pk(privkey):pubkey.
fun sign(bitstring,privkey): bitstring.
reduc forall b:bitstring,sk:privkey; verify(sign(b,sk),pk(sk)) = b.

These and other standard cryptographic operations are part of the ProVerif
library. Users can define other primitives where necessary. Such primitives can
be used for example to build detailed models of applications like ConfiChair [7].

The WebSpi library defines data types related to the HTTP protocol and
provides interfaces to the core functionality of browsers and web servers, in the
form of a set of private channels. Application-layer protocols are expressed as
processes linked to this channel interface. The rest of the network, including
potential attackers, can be thought of as arbitrary processes with access to net

and any other public channel.

3.2 WebSpi Architecture

In our model, users surf the web by interacting with web pages on browsers that
communicate on the public channel net over HTTP(S) with servers that host
web applications.

Users. Users are endowed with, or can acquire, username/password credentials
to access applications. Applications are identified by a host name and a path
within that host. The behaviour of specific web page users can be modeled by
defining a UserAgent process that uses the browser interface described below.

Servers. Servers possess private and public keys used to implement encrypted
TLS connections with browsers. These are stored in the serverIdentities table to-
gether with the server name (protocol and host) and a flag xdr specifying if cross-
domain requests are accepted. The WebSpi implementation of a server is given by
the HttpServer process below. HttpServer handles HTTP(S) messages (and encryp-
tion/decryption when necessary) and routes parsed messages to the correspond-
ing web applications on the channels httpServerRequest and httpServerResponse. To
model the server-side handler of a web application one needs to write a process
that uses this interface to send and receive messages.

let HttpServer() =
in(net,(b:Browser,o:Origin,m:bitstring));
get serverIdentities(=o,pk P,sk P,xdr) in
let (k:symkey,httpReq(u,hs,req)) = reqdec(o,m,sk P) in
if origin(u) = o then
let corr = mkCorrelator(k) in



136 C. Bansal et al.

out(httpServerRequest,(u,hs,req,corr));
in(httpServerResponse,(=u,resp:HttpResponse,cookieOut:CookiePair,=corr));
out(net,(o,b,respenc(o,httpResp(resp,cookieOut,xdr),k))).

Browsers. Each browser has an identifier b and is associated with a user. The
WebSpi implementation of a browser is given by the HttpClient process (we inline
some fragments below). Cookies and local storage are maintained in global tables
indexed by browser, page origin and, only for cookies, path. JavaScript running
on a page can access cookies and storage associated with the page origin using
the private channels getCookieStorage and setCookieStorage, in accordance to the
Same Origin Policy. Cookies can be flagged as secure or HTTP-only. Secure
cookies are sent only on HTTPS connections and HTTP-only cookies are not
exposed to pages via the CookieStorage channel. For example, the HttpClient code
that gets triggered when the JavaScript of page p on browser b wants to set
cookies dc and store ns in local storage is:

in (setCookieStorage(b),(p:Page,dc:Cookie,ns:Data));
get pageOrigin(=p,o,h,ref) in get cookies(=b,=o,=h,ck) in
insert cookies(b,o,h,updatedomcookie(ck,securejs(dc),insecurejs(dc)));
insert storage(b,o,ns)

Here, the function updatedomcookie prevents JavaScript from updating the HTTP-
only cookies of the cookie record ck.

The main role of the browser process is to handle requests generated by users
and web pages, and their responses. The location bar is modeled by channel
browserRequest, which can be used by to navigate to a specific webpage. Loca-
tion bar request have an empty referrer header. Hyperlink clicks or JavaScript
GET/POST requests are modeled by the pageClick channel. The browser attaches
relevant headers (referrer and cookies) and sends the request on the network.
When it receives the response, it updates the cookies and creates a new page with
the response data. Process HttpClient also takes care of encrypting HTTPS re-
quests, decrypting HTTPS responses, and handling redirection responses. AJAX
requests are sent to the browser on channel ajaxRequest. When the browser re-
ceives the response to an AJAX request it passes on the relevant data to the
appropriate web page. (Although we abstract away the tree-like structure of the
DOM, we do represent its main features salient to modeling web interactions:
cookies, hyperlinks, location bar, forms, etc.) We give the HttpClient code for
sending a request req to URI u from page p, with referrer ref and AJAX flag aj:

let o = origin(u) in let p = path(u) in
get cookies(=b,=o,=slash(),cs) in get cookies(=b,=o,=p,cp) in
let header = headers(ref, cookiePair(cs,cp), aj) in
get publicKey(=o,pk host) in
let m = httpReq(u,header,req) in
let (k:symkey,e:bitstring) = reqenc(o,m,pk host) in
out(net,(b, o, e));

The request header is obtained concatenating the referrer, the cookies cs for
path “/” and cp for path p and the AJAX flag aj. If needed one could extend



Keys to the Cloud 137

the model by including additional headers such as Origin [9]. Note how the
code retrieves the public key pk host of the destination server, which is used to
create the symmetric key k and the encrypted message e. The origin parameter o
passed to the encryption function reqenc specifies if the chosen protocol is HTTP
or HTTPS. In the former case, e equals m.

To model the client side of a web application, one needs to write a pro-
cess that can access the private browser interface channels pageClick, ajaxRequest,
getCookieStorage and setCookieStorage.

Web Attacker Model. Representing the network as a public channel net

enables the standard Dolev-Yao network attacker, that can intercept and inject
messages but is not able to break cryptography. To model a compromised server,
we simply release its private key on a public channel so that an arbitrary attacker
process can impersonate the server. We enable XSS and code injection attacks
by defining a process AttackerProxy that receives messages on a public channel
(available to the attacker) and forwards them on the browser’s private channels.
The parameters sent on these channels include the browser and page ids, which
are normally secret. We can selectively enable the compromise of a specific page
on a specific browser by releasing the corresponding ids to the environment.
CSRF attacks are enabled by the willingness of the user to visit attacker websites
and by the ability of our model to represent GET/POST requests and attach
the corresponding cookies.

Verification in WebSpi. The verification model of WebSpi is the same as in
ProVerif. Security goals in ProVerif are typically written as correspondence asser-
tions between events embedded in the code [12]. The command event e(M1,...,Mn)

inserts an event e(M1,...,Mn) in the trace of the process being executed. A script
in fact contains processes and queries of the form ∀M1, ...Mk. e(M1, ...Mk) ⇒ φ.
ProVerif tries to prove that whenever the event e is reachable, the formula φ
is true (φ can contain conjunctions or disjunctions). In Section 4 we will show
concrete security queries.

The soundness properties of ProVerif [12] also hold for our security policies.
If an expect is satisfied, then it is satisfied in all traces of running the applied-pi
processes defined in the script in parallel with any arbitrary attacker processes.
If ProVerif proves that an expect is not satisfied, it outputs a proof derivation
that explains how an attacker can trigger an event that violates the policy.

Although very expressive, WebSpi is not a complete model of the web. For
example, our model of the Same Origin Policy does not include <iframe> tags
from different origins within the same page, and we do not model several HTTP
headers such as Origin and ETag. Hence, our main focus is on discovering at-
tacks, which can be validated in the real world, rather than on providing positive
guarantees, which may be violated in practice due to omissions in our model.

4 Analyzing Encrypted Web Storage Services

In this section, we analyze three web applications that use the cloud to store
encrypted secrets. We show how to model these applications using WebSpi and



138 C. Bansal et al.

verify them using ProVerif against realistic web attackers. We show how web
vulnerabilities enable concrete attacks that leak secrets to a web attacker. It is
difficult to completely eradicate such vulnerabilities from complex, real-world
web applications. For that reason we propose countermeasures that harden such
applications even in the presence of vulnerabilities.

4.1 ConfiChair

ConfiChair [7] is a cloud-based conference management system that seeks to offer
stronger security and privacy guarantees than current systems like EasyChair
and EDAS. Each conference has a chair, authors, and a program committee
(of reviewers). Once a user logs in at
the login page, she is forwarded to
a Conferences page where she may
choose a conference to participate
in. The user may choose her role in
the conference by clicking on “change
role” which forwards her to the role
page. Papers and reviews are stored
encrypted on the web server, and each
user holds keys to all papers and reviews she is allowed to read in a keypurse.
For example, each paper has an encryption key (generated by the author) that
is stored in the author’s and conference chair’s keypurses. Each conference has a
private key stored only in the chair’s keypurse and a shared reviewer key that is
stored in each reviewer’s keypurse. Each user’s keypurse is also stored encrypted
on the web server under a key derived from her password. The password itself
is not stored there, instead a separate key derived from the password is used to
authenticate the user. The web server authenticates users before sending them
their keypurses and enforces role-based access control to conference actions and
per-user access control to papers and reviews. All the cryptography for decrypt-
ing and encrypting keypurses, papers, and reviews is performed in the browser
using a combination of JavaScript and a Java applet.

WebSpi Analysis. We model and evaluate paper downloads using WebSpi.

Login. We model the login page using two processes: LoginApp represents a
server-side webpage listening for requests on https://confichair.org/login, and
LoginUserAgent represents the client-side JavaScript and HTML downloaded from
this URL. These processes implement the web login protocol of Section 2.2, but
do not yet derive the encryption and MAC keys.

The process LoginUserAgent downloads a login form, waits for the user to type
her username and password, derives an authentication credential from the pass-
word and sends the username and credential to LoginApp over HTTPS (through
the network channel between the browser and HTTP server processes):

let loginURI = uri(https(), confichair, loginPath(), nullParams()) in
out(browserRequest(b),(loginURI, httpGet()));
in (newPage(b),(p:Page,=loginURI,d:bitstring));

https://confichair.org/login


Keys to the Cloud 139

get userData(=confichair, uid, pwd, paper) in
let cred = kdf1(pwd) in
in (getCookieStorage(b),(=p,cookiePair(cs,ch),od:Data));
out (setCookieStorage(b),(p,ch,storePassword(pwd)));
event LoginInit(confichair, b, uid);
out(pageClick(b),(p,loginURI,httpPost(loginFormReply(uid,cred))))

Notably, the process stores the password in the HTML5 local storage corre-
sponding to the current origin https://confichair.org, making it available to
any page subsequently loaded from this origin. When the user logs out, the local
storage is purged.

The server process LoginApp is dual to the LoginUserAgent. It checks that the
credential provided by the user in the login form is valid (by consulting a server-
side database modeled as a table) and creates a session id passed to the browser
as a cookie for all pages on the website, before redirecting the user to the con-
ferences page.

Paper Download. We model all the conference pages using a server-side pro-
cess ConferenceApp and a client-side process ConferenceUserAgent. The process
ConferencesUserAgent first makes an AJAX request to retrieve the encrypted key-
purse of the logged in user. It then decrypts the keypurse using a key derived
from the cached password and stores the decrypted keypurse in local storage for
the current origin (https://confichair.org).

let keypurseURI = uri(https(), confichair, keyPursePath(), nullParams()) in
out (ajaxRequest(b),(p,keypurseURI,httpGet()));
in (ajaxResponse(b),(=p,=keypurseURI,JSON(x)));
in (getCookieStorage(b),(=p,cookiePair(cs,ch),storePassword(pwd)));
let keypurse(k) = adec(x, kdf2(pwd)) in
out (setCookieStorage(b),(p,ch,storeKeypurse(k))))

For simplicity, the keypurse contains a single key, meant for decrypting the
current user’s papers. Subsequently, the user may at any point ask to download
a paper and decrypt the downloaded PDF with the keypurse.

let paperURI = uri(https(), h, paperPath(), nullParams()) in
out (ajaxRequest(b),(p,paperURI,httpGet()));
in (ajaxResponse(b),(=p,=paperURI,JSON(y)));
in (getCookieStorage(b),(=p,cookiePair(cs,ch),storeKeypurse(k)));
let paper = adec(y,k) in event PaperReceived(paper))

Security Goals. We model two simple security goals for our ConfiChair website
model. First, the login mechanism should authenticate the user. This is modeled
as a correspondence query:

event(LoginAuthorized(confichair,id,u,c)) =⇒event(LoginInit(confichair,b,id))

Second, that a user’s papers must remain syntactically secret. We model this
using an oracle process that raises an event when the attacker successfully guesses
the contents of a paper

in(paperChannel, paper:bitstring);
get userData(h, uId, k, =paper) in event PaperLeak(uId,paper).

https://confichair.org
https://confichair.org


140 C. Bansal et al.

We then ask whether the event PaperLeak is ever reachable. The queries writ-
ten here are quite simple. More generally, they must account for compromised
users whose passwords are known to the attacker. For the login and conferences
processes above, these queries do indeed hold against an adversary who controls
the network, some other websites that honest users may visit, and some set of
compromised users.

Attacker Model: XSS on Role Page. Our security analysis found a number of
web vulnerabilities. Here we describe how the change-role functionality on the
ConfiChair webpage is vulnerable to an XSS attack. If an attacker can trick a user
into visiting the URL http://confichair.org/?set-role=<script>S</script, Con-
fiChair returns an error page that embeds the HTML tag <script>S</script> ,
causing the tainted script S to run. We model this attack as part of the client-side
process RoleUserAgent for the role page: after loading the page, the process leaks
control of the page to the adversary by publicly disclosing its identifier:

let roleURI = uri(https(), h, changeRolePath(), roleParams(x)) in
out(browserRequest(b),(roleURI, httpGet()));
in (newPage(b),(p:Page,=roleURI,y:bitstring));
out(pub, p)

The attacker may subsequently use this page identifier p to make requests on
behalf of the page, read the cookies, and most importantly, the local storage for
the page’s origin.

Attacks on Authentication and Paper Secrecy. If we add this RoleUserAgent to our
ConfiChair model ProVerif finds several attacks against our security goals. First,
the XSS attacker may now read the current user’s password from local storage
and send it to a malicious website. This breaks our authentication goal since
from this point onwards the attacker can pretend to be the user. Second, the
XSS attacker may read the current user’s keypurse from local storage and send
it to a malicious website. This breaks our paper secrecy goal since the attacker
can decrypt the user’s papers.

These attacks have been experimentally confirmed on the ConfiChair website
(along with some others described in Section 5). They break the stated security
goals of ConfiChair by leaking the user’s papers and reviews to an arbitrary
website. The previous ProVerif analysis of ConfiChair [7] did not cover browser-
based key management or XSS attacks: its security proofs remain valid in the
cloud-based attacker model.

Mitigations and Countermeasures. An obvious mitigation is to eliminate the
XSS attack on the change-role functionality. A more interesting design question
is how to change the ConfiChair website to be more robust in the presence of
such XSS attacks. We focus on countermeasures that keep the current workflow.

First, there is no need for the website to store the cleartext password in local
storage, where an XSS attacker can obtain it. Storing just the decryption key
is enough. Second, we propose to use a fresh session-specific wrapping key to
encrypt both the decryption key and the keypurse before storing them in local
storage. The website can then decide which pages need access to these keys and

http://confichair.org/?set-role=<script>S</script
<script>S</script>
S


Keys to the Cloud 141

expose the wrapping key in a secure cookie only for those pages. For example,
suppose all pages that need access to the wrapping key are served from the sub-
domain secure.confichair.org, whereas all other pages are served from the
parent domain confichair.org. The wrapping key can then be set as a cookie
for the sub-domain, pages in the parent domain will not be able to access it. In
this design, the website never has both the key and the encrypted data. During
login the browser has the password and the website has the encrypted data.
After login, the browser has a re-encrypted keypurse and the website has the
fresh encryption key. With these changes our secrecy and authentication queries
are verified by ProVerif. That is, if the login and conferences pages are hosted
on the secure sub-domain and are XSS-free, then XSS attacks on other pages
do not impact the security of the application. Whether this countermeasure is
practical or even resistant to more sophisticated iframe-based attacks requires
further investigation.

4.2 SpiderOak

SpiderOak is a commercial cloud-based backup, synchronization and sharing ser-
vice. It advertises itself as “zero-knowledge”, that is, the SpiderOak servers only
store encrypted data, but never the associated decryption keys. Users typically
use downloaded client software to connect to SpiderOak and synchronize their
local folders with cloud-based encrypted backups. However, SpiderOak also pro-
vides its users with a web front end to access their data so that they can read
or download their files on a machine where they have not installed SpiderOak.

When a user logs into the SpiderOak website, her decryption keys are made
available to the web server so that it can decrypt a user’s files on her behalf.
These keys are to be thrown away when the user logs out. However, if the
user shares a folder using a web link with someone else, the decryption key is
treated differently. The key is embedded in the web link, and it is also stored on
the website for the file owner’s use. We focus on modeling this management of
shared folders (called shared rooms) on SpiderOak.

WebSpi Analysis. The SpiderOak login process is similar to ConfiChair, ex-
cept that besides the derived authentication credential it sends also the plaintext
password to the server. After login, the user is forwarded to his root directory,
from where he may choose to open one of his shared folders (called shared rooms).

The process SharedRoomUserAgent models the client-side JavaScript triggered
when the user accesses a shared folder. It makes an AJAX request to retrieve
the URL, file names, and decryption key for the folder. It then constructs a web
link consisting of the URL, file name, and the decryption key and uses the URL-
based sharing protocol of Section 2.2 to retrieve its files. The server-side process
SharedRoomApp responds to the AJAX request from the user: it authenticates
the user based on her login cookie, retrieves the folder URL, file names, and
decryption key from a database and sends it back in a JSON formatted message.
It also responds to GET requests for files, but in this case the user does not have
to be logged in; she can instead provide the name of the file and the decryption
key as parameters in the URI.

secure.confichair.org
confichair.org


142 C. Bansal et al.

Similarly to ConfiChair, we set two security goals: user authentication and
syntactic file secrecy. ProVerif is able to show that our SpiderOak model pre-
serves login authentication but it fails to prove file secrecy as we explain below.

JSONP CSRF Attack on Shared Rooms. The SpiderOak shared rooms page is
vulnerable to a CSRF attack on its AJAX call for retrieving shared room keys.
If a user visits a malicious website while logged into SpiderOak, that website
can trigger a cross-site request to retrieve the shared room key for the currently
logged-in user. The browser automatically adds the user’s login cookie to the
request and since the server relies only on the cookie for authentication, it will
send back the JSON response to the attacker. The attacker can then retrieve the
file by constructing a web link and making a GET request.

This CSRF attack only works if the target website explicitly enables cross-
domain AJAX requests, as we found to be the case for SpiderOak. In our Spi-
derOak model, the SharedRoomsApp page sets the xdr flag, and ProVerif finds the
CSRF attack (as a violation of file secrecy).

Mitigations and Countermeasures. We experimentally confirmed the attack on
the SpiderOak website and on our advice, SpiderOak removed cross-domain ac-
cess to shared rooms. As in ConfiChair, we consider whether a different design of
SpiderOak would make it resistant to attack even if it had a CSRF vulnerability.

One countermeasure is to encrypt the shared room key with the owner’s pass-
word. Hence, only the owner can decrypt the key, but that is adequate since
other shares are given the key in the web link anyway. ProVerif shows that with
this fix the attacker is no longer able to obtain the file, even though the CSRF
attack is still enabled. The attacker can get the file URL but not the key.

4.3 1Password

1Password is a password manager that uses the cloud only as an encrypted store.
Typically, it uses Dropbox to backup and replicate a user’s encrypted password
database. To protect these passwords in transit, on Dropbox, and on each device,
the password database is always encrypted on the client before uploading. Even
though 1Password does not host any website, we show that it is nonetheless
vulnerable to web-based attacks.

Password managers such as 1Pass-
word provide a browser extension that
makes it easier for users to manage
their passwords. The first time a user
visits a login page and enters his pass-
word, the browser extension offers to
remember the password. On future
visits, 1Password offers to automati-
cally fill in the password. Concretely, the extension looks at the origin of the
page and uses it to lookup its database. If a password is found, it is decrypted
and filled into the login form.

WebSpi Analysis. We model 1Password and its browser extension as a process
that waits for messages from a page on a channel extensionChannel; it then looks



Keys to the Cloud 143

Table 2. Web vulnerabilities in cloud storage websites

Name Alternate Login Insecure Cookie XSS CSRF Open Redirector Frameable

Dropbox OAuth � � � � �

SpiderOak HTTP Auth � � � � �

LastPass YubiKey � � � � �

PassPack YubiKey � � � � �

ConfiChair None � � � � �

Helios OAuth, OpenID � � � � �

for an entry for the current origin in the password database (called a keychain
store). If it finds an entry, it asks the user for a master password, uses it to
decrypt the username and password, and returns them on the extension channel
to the requesting page. This protocol corresponds to the automatic form filling
protocol of Section 2.2, except that 1Password does not include a MAC with
the encrypted data. We compose this extension process with a standard login
application, for example, as in the SpiderOak model, to obtain a simple model
for 1Password. Login authentication and password secrecy are the security goals.

Metadata Tampering on the Password Database. 1Password is designed to be
resistant to attacks on Dropbox and to an attacker who has stolen a user’s
device. We model an attacker with read/write access to the encrypted password
database. Each password entry in 1Password is stored as a separate text file in
Dropbox, so our model captures attackers who can read or write to these files.
When composed with this attacker and a malicious website, ProVerif finds that
password secrecy is violated (hence, so is login authentication).

The attack proceeds as follows: the attacker reads the entry for (say) Spi-
derOak from the database and replaces the hostname SpiderOak with the name
of his own server, Mallory. Since the origin is not encrypted or integrity-protected
in the database, this modification remains undetected. The next time the user
visits Mallory’s website, the page requests a password for Mallory and the 1Pass-
word extension instead provides the password for SpiderOak, which gets leaked
to Mallory. We call this attack a metadata tampering attack since the attacker
manages to modify the metadata surrounding an encrypted password. Similar
attacks are applicable in other storage services.

Mitigations and Countermeasures. The metadata tampering attack only applies
if the attacker has write access to the encrypted database. Hence, one counter-
measure is to make the database inaccessible to the attacker. A more robust
solution is to add metadata integrity protection to the password database. As
in the protocols of Section 2.2, we propose that both the ciphertext and all
metadata in a keychain should be MACed with a key derived from the master
password. ProVerif verified that this prevents metadata tampering, and hence
password leaks, even if the password database is stored in an insecure location.

5 Concrete Attacks on Encrypted Web Storage Services

We have shown how to formally analyze core components of three encrypted
web storage services using WebSpi and ProVerif. In each case, we found that



144 C. Bansal et al.

the security provided by cryptography was circumvented by a web-based attack.
For illustration, Table 2 summarizes vulnerabilities on storage websites found
by us and by others. Besides XSS and CSRF, this table notes websites that did
not use secure cookies and were thus vulnerable to session hijacking, those that
had open redirectors that may lead to phishing, and those that were framable
and thus vulnerable to clickjacking. These vulnerabilities are ubiquitous on the
web and seem difficult to avoid on realistic websites. We now explain the impact
of such vulnerabilities on our target applications. All the attacks below were
discovered and reported by us, either during this work, or in [11].

Metadata Tampering. Encrypted storage services such as BoxCryptor, Cloud-
fogger, and 1Password aim to be resilient to the tampering of encrypted data
on DropBox. However, these applications failed to protect metadata integrity,
so an attacker could confuse users about their stored data. For example, one
could rename an encrypted file in BoxCryptor and replace an encrypted file in
CloudFogger without these modifications being detected.

User Impersonation. Both ConfiChair and Helios can be attacked if a logged-in
user visits a malicious website. If a logged-in conference chair visits a malicious
website, the website may use a series of CSRF and clickjacking attacks to close
submissions or release referee reports to authors. On Helios, the problem is more
serious. If a user authenticates on Helios using Facebook (a common usage pat-
tern), any malicious website she subsequently visits may steal her authentication
token and impersonate her, even if she logged out of Helios. The attack relies
on an open redirector on Helios and the OAuth 2.0 protocol implemented by
Facebook, and corresponds to a token redirection attack previously found using
WebSpi [8]. This attack undermines voter authentication on Helios, and lets an
attacker modify election settings by impersonating the election administrator.

Password Phishing. Password managers are vulnerable to a variety of phishing
attacks where malicious websites try to fool them into releasing passwords for
trusted websites. Metadata tampering, as shown for 1Password, also applies to
Roboform. Another attack vector is to use carefully crafted URLs that are in-
correctly parsed by the password manager. A typical example is http://a:b@c:d,
which means that the user a with password b wants to access website c at port d,
but may be incorrectly parsed by a password manager as a user accessing web-
site a at port b. We found such vulnerabilities in 1Password and many popular
JavaScript URL parsing libraries. We also found that password managers like
LastPass that use bookmarklets are vulnerable to JavaScript rootkits [5].

6 Conclusions

In this paper, we formally analyzed 3 encrypted web storage applications, and
described concrete security attacks in 7 more. Our reports resulted in security
updates for Wuala, 1Password, LastPass, and SpiderOak, and security advisories
for the ConfiChair and Helios websites, others are being discussed. WebSpi is
a useful tool for evaluating web applications and for experimenting with their

http://a:b@c:d


Keys to the Cloud 145

design to make them more resilient to standard web vulnerabilities. As Web-
Spi is not complete, we leave the task of modeling even more attacks, such as
framing [22], JavaScript rootkits [5], and other scenarios [1], to future work.

References

1. Browser security handbook, http://code.google.com/p/browsersec
2. How secure is Dropbox?, https://www.dropbox.com/help/27/en
3. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.

SIGPLAN Not. 36, 104–115 (2001)
4. Adida, B.: Helios: Web-based open-audit voting. In: USENIX Security Symposium,

pp. 335–348 (2008)
5. Adida, B., Barth, A., Jackson, C.: Rootkits for JavaScript environments. In: Work-

shop on Offensive Technologies, WOOT (2009)
6. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-

dation of web security. In: CSF, pp. 290–304 (2010)
7. Arapinis, M., Bursuc, S., Ryan, M.: Privacy Supporting Cloud Computing: Con-

fiChair, a Case Study. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 89–108. Springer, Heidelberg (2012)

8. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: CSF, pp. 247–262 (2012)

9. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: CCS, pp. 75–88 (2008)

10. Belenko, A., Sklyarov, D.: “Secure Password Managers” and “Military-Grade En-
cryption” on Smartphones: Oh, Really? Technical report, Elcomsoft Ltd. (2012)

11. Bhargavan, K., Delignat-Lavaud, A.: Web-based attacks on host-proof encrypted
storage. In: Workshop on Offensive Technologies, WOOT (2012)

12. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4), 363–434 (2009)

13. Blanchet, B., Chaudhuri, A.: Automated formal analysis of a protocol for secure file
sharing on untrusted storage. In: IEEE Symposium on Security & Privacy (2008)

14. Blanchet, B., Smyth, B.: ProVerif: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial, http://www.proverif.inria.fr/manual.pdf

15. Bohannon, A., Pierce, B.C.: Featherweight Firefox: Formalizing the core of a web
browser. In: WebApps (2010)

16. Groß, T.R., Pfitzmann, B., Sadeghi, A.-R.: Browser Model for Security Analy-
sis of Browser-Based Protocols. In: De Capitani di Vimercati, S., Syverson, P.F.,
Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 489–508. Springer, Hei-
delberg (2005)

17. Hammer-Lahav, E., Recordon, D., Hardt, D.: The OAuth 2.0 Authorization Pro-
tocol. IETF Internet Draft (2011)

18. Jackson, D.: Alloy: A Logical Modelling Language. In: Bert, D., Bowen, J.P., King,
S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, p. 1. Springer, Heidelberg (2003)

19. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

http://code.google.com/p/browsersec
https://www.dropbox.com/help/27/en
http://www.proverif.inria.fr/manual.pdf


146 C. Bansal et al.

20. Kelsey, J., Schneier, B., Hall, C., Wagner, D.: Secure Applications of Low-Entropy
Keys. In: Okamoto, E., Davida, G., Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396,
pp. 121–134. Springer, Heidelberg (1998)

21. Rescorla, E.: HTTP over TLS. Request for Comments 2818, IETF (2000)
22. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study

of clickjacking vulnerabilities at popular sites. In: Web 2.0 S&P (2010)
23. Stearne, B., Barth, A. (eds.): Content Security Policy 1.0. W3C Working Draft

(2012)
24. Yoshihama, S., Tateishi, T., Tabuchi, N., Matsumoto, T.: Information-Flow-Based

Access Control for Web Browsers. IEICE Transactions E92-D(5), 836–850 (2009)


	Keys to the Cloud: Formal Analysis and Concrete Attacks on Encrypted Web Storage
	Application-Level Cryptography on the Web
	Encrypted Web Storage Applications
	An Encrypted Storage Protocol
	Deploying Encrypted Storage Protocols over the Web
	Web Attacker Model

	Automated Verification of Web Cryptography
	Processes
	WebSpi Architecture

	Analyzing Encrypted Web Storage Services
	ConfiChair
	SpiderOak
	1Password

	Concrete Attacks on Encrypted Web Storage Services
	Conclusions


