
HAL Id: hal-01948722
https://hal.inria.fr/hal-01948722

Submitted on 8 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Treatment of Accountable Proxying over TLS
Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-Lavaud,

Pierre-Alain Fouque, Cristina Onete

To cite this version:
Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-Lavaud, Pierre-Alain Fouque, Cristina
Onete. A Formal Treatment of Accountable Proxying over TLS. SP 2018 - IEEE Symposium on
Security and Privacy, May 2018, San Francisco, United States. �hal-01948722�

https://hal.inria.fr/hal-01948722
https://hal.archives-ouvertes.fr

A Formal Treatment of Accountable Proxying over TLS

Karthikeyan Bhargavan1, Ioana Boureanu2, Antoine Delignat-Lavaud3, Pierre-Alain Fouque4, and Cristina Onete5
1 Inria de Paris, 2 University of Surrey, SCCS 3 Microsoft Research, 4 Université de Rennes 1, IRISA,

5 Université de Limoges, XLIM, CNRS 7252
Email: karthikeyan.bhargavan@inria.fr, i.boureanu@surrey.ac.uk, antld@microsoft.com,

pa.fouque@gmail.com, cristina.onete@gmail.com

Abstract—Much of Internet traffic nowadays passes through
active proxies, whose role is to inspect, filter, cache, or trans-
form data exchanged between two endpoints. To perform their
tasks, such proxies modify channel-securing protocols, like
TLS, resulting in serious vulnerabilities. Such problems are
exacerbated by the fact that middleboxes are often invisible to
one or both endpoints, leading to a lack of accountability. A
recent protocol, called mcTLS, pioneered accountability for
proxies, which are authorized by the endpoints and given
limited read/write permissions to application traffic.

Unfortunately, we show that mcTLS is insecure: the pro-
tocol modifies the TLS protocol, exposing it to a new class
of middlebox-confusion attacks. Such attacks went unnoticed
mainly because mcTLS lacked a formal analysis and security
proofs. Hence, our second contribution is to formalize the goal
of accountable proxying over secure channels. Third, we pro-
pose a provably-secure alternative to soon-to-be-standardized
mcTLS: a generic and modular protocol-design that care-
fully composes generic secure channel-establishment protocols,
which we prove secure. Finally, we present a proof-of-concept
implementation of our design, instantiated with unmodified
TLS 1.3 draft 23, and evaluate its overheads.

Keywords-mcTLS, TLS 1.3, provable security

I. INTRODUCTION

Internet protocols are largely designed around the end-to-
end principle, which says that all application logic, except
for the mundane activity of forwarding packets, should
reside at the endpoints. However, a good portion of In-
ternet traffic today passes through one or several active
proxies or middleboxes that inspect, filter, and transform
packets, based on dynamically configurable policies. These
middleboxes include content delivery networks, personal
and enterprise-level firewalls, compression proxies, malware
scanners, parental-control content filters, and many other in-
network functionalities that are considered desirable by client
institutions, web servers, and network operators.

All of these functionalities require read access and/or
write access to client-server traffic, and are consequently
hindered by the prevalence of end-to-end encryption pro-
tocols like Transport Layer Security (TLS). To continue
working, middlebox providers have resorted to a variety of
ad-hoc techniques that enable them to decrypt TLS traffic
between clients and servers. These techniques necessarily
contradict the end-to-end security goals of TLS, by turning
a well-studied two-party secure channel into a non-standard

multi-party cryptographic protocol with unknown security
properties. In fact, middleboxes often introduce new threats,
since adversaries aiming to break secure connections can
now attack not just endpoints but also the middleboxes. Our
goal in this paper is to precisely identify these threats and to
formally define the security goals of proxied TLS connections,
in order to enable a rigorous evaluation of existing and new
middlebox-based designs.

Content Delivery Networks. CDNs like Akamai and Cloud-
flare are good examples of widely-used active proxies. For
example, Akamai owns 233,000 HTTP and HTTPS caching
proxy servers in over 130 countries and within more than
1,600 networks around the world, serving 27% of the world’s
network traffic on behalf of many of the top websites. In
October 2015, they estimated that 45% of their traffic was
TLS-encrypted traffic [29] and this number has undoubtedly
significantly increased since.

In order to serve TLS-traffic on behalf of a website, CDNs
like Akamai need the website-owner to allow them to hold
a valid X.509 certificate for the website’s domain(s) and the
associated private key on their behalf, essentially licensing
the CDN to impersonate the website to connecting web-
browsers. This form of delegation endows a high degree
of trust in the CDN infrastructure, since a bug or attack
on any of the CDN’s “edge” servers around the world may
allow an attacker to steal the website’s private key or other
sensitive user data (e.g.see the recent Cloudbleed bug in
Cloudflare [35]). Websites can try to mitigate this risk by
delegating only certain subdomains to the CDN, rather than
the full web-applications, but this has limited effectiveness on
websites where JavaScript from one subdomain is routinely
loaded on another.

An alternative to the CDN-architecture above, denoted
Keyless SSL, is offered as a premium service by the CDN
called Cloudflare. Cloudflare only gets the X.509 certificate
for a CDN-ed domain (and the public key within the cert), and
Cloudflare’s customers securely store the associated private
keys on their own servers, only granting a limited key-usage
API to the Cloudflare’s proxy servers. This design requires a
minor refactoring of the TLS handshake, but even this small
change results in a new three-party protocol whose security
guarantees are subtle. Indeed, recently, Bhargavan et al. [4]

demonstrated several vulnerabilities of Keyless SSL; they
used a provable security approach to formally analyze it and
proposed alternative designs that achieve stronger security
goals, albeit with reduced performance.
Client-side firewalls and content filters. Firewalls are
commonly used in enterprises and educational institutions
to protect computers from malware and age-inappropriate
content. To be able to inspect TLS traffic between machines
inside the firewall and the open Web, these firewall proxies
effectively mount a man-in-the-middle attack on the TLS
connection by asking all clients to install a CA certificate
that they can then use to issue certificates for any web server.
This gross misuse of the public key infrastructure completely
bypasses the end-to-end guarantees of TLS, and hence
requires complete trust in the design and implementation
of the proxy itself.

Worryingly, recent studies of such proxies uncovered a
plethora of serious security issues, from inappropriate or
inexistent certification validation and ciphersuite downgrades,
to the execution of completely invalid TLS handshakes [15],
[34]. A typical example of what can go wrong is the Superfish
scandal of 2015 [18] where the private key of the CA
certificate used by a client-side proxy was leaked, allowing
attackers to impersonate any website to any client who used
the proxy. More generally, client-side proxies that install root
CA certificates are completely invisible to both the client and
server, making it impossible for web browsers or websites to
impose their own security policies for sensitive transactions,
say between a client and a bank.
Fine-grained access control with mcTLS. A recent proto-
col called mcTLS [33] proposes a different design where all
middleboxes are fully visible to both the client and the server,
both of whom must agree on the read/write privileges of each
middlebox before the middleboxes get to intercept the TLS
connection. Hence, mcTLS offers fine-grained access control
to both the client and server over all proxied TLS connections.
To achieve this efficiently, the protocol significantly modifies
the TLS handshake protocol, aggressively sharing messages
and key material across multiple hops to perform several
TLS handshakes at once.

Because of its excellent performance and support for fine-
grained policies, mcTLS is being standardized within the
ETSI standards organization as the default middlebox security
protocol for network operators.1 Consequently, the protocol is
poised to have a big impact on practical middlebox designs.
However, before the protocol is standardized and widely
deployed, we believe it is important to formalize its security
goals and verify that mcTLS meets them.

The authors of mcTLS do offer an informal security
analysis [33] of the protocol, but without a formal proof.
Indeed, as we show in the next section, certain intended use-

1https://portal.etsi.org/webapp/WorkProgram/Report WorkItem.asp?
WKI ID=52930

cases of mcTLS are demonstrably insecure, which motivates
the need for formal analysis, and provides a stark warning
against tampering with existing protocols like TLS without a
formal proof. This is particularly important for TLS 1.3, the
new version of TLS which was designed to be provably
secure and has received considerable attention from the
academic community, but whose strong guarantees can still
be completely broken by badly designed proxies.
Our approach and contributions. In this paper, we adopt
a provable security approach to proxied TLS connections:
• We show that existing proxying mechanisms, including

mcTLS, fail to ensure intuitive security notions of
authentication, confidentiality, and integrity, even in
common proxying scenarios.

• We provide (to our knowledge) the first fully for-
malized security definition for proxied TLS. We call
this definition authenticated and confidential channel
establishment with accountable proxies (ACCE-AP).

• We provide a modular protocol construction that only
allows proxying with the full, explicit knowledge and
consent of both partners (akin to mcTLS). Unlike
mcTLS, our construction is provably secure and can be
instantiated with any authenticated key-exchange (AKE)
protocols which respect some reasonable conditions2.
In particular, our design composes TLS connections in
a way that allows us to rely on existing proofs of TLS,
rather than prover our protocol’s security from scratch.

• We describe a proof-of-concept implementation, showing
how our new design can be deployed modularly on top
of miTLS, a high-assurance TLS 1.3 library.

We provide a more extended review of related literature
in Appendix A.

II. ACTIVE PROXY ARCHITECTURES AND THEIR FLAWS

The goal of an active proxy is to provide in-network func-
tionality between a client and a server, while preserving (as
much as possible) end-to-end confidentiality, authentication,
and data integrity. Figure 1 depicts a typical scenario with
one proxy. We note that the proxy may offer its services to
many clients and servers, some of whom may be malicious
or otherwise controlled by an adversary. Furthermore, we
assume that the TLS connections between the client and
middlebox, and between the middlebox and server are subject
to standard network attacks.

A. Proxying Architectures

Existing proxying architectures can be broadly categorized
in terms of which participants are aware of the proxying.
We discuss two common setups below, before focusing
on mcTLS, one of the most sophisticated and convincing
proxying protocols designed to date.

2On the one hand, this means that we can use TLS 1.3 as our building-
block. On the other hand, we do not use any specific property of a given
version of TLS 1.3, not in the construction nor in the proofs.

Figure 1: Active proxying
Invisible Proxies. Before encrypted connections became the
norm, a variety of in-network proxies were used to provide
compression, caching, load-balancing, and other bandwidth-
saving or latency-reducing services. Once they were installed
and configured, these proxies were fully invisible to both
the client and server, since they could operate directly on
unencrypted data. To continue working over TLS, these
proxies need to be able to impersonate the client and the
server to each other, a “feature” called SSL Interception.
On the Web, clients are usually anonymous, but servers
are identified by X.509 public-key certificates, and so such
proxies need to have access to a valid certificate (and private
key) for the server. This means that the proxy cannot be
perfectly invisible to both parties. Either the proxy needs
to be fully trusted by the server, who provisions it with a
certificate, or it needs to be even more trusted by the client,
who allows it to install a CA certificate that the proxy can
use to impersonate any web server. We call the former design
client invisible and the latter design server invisible.

Invisible proxies are attractive because they require little
change to existing client-server deployment, but they are
vulnerable to a number of attacks because the security
of the TLS ecosystem relies on a careful collaboration
between mechanisms implemented by both clients (web
browsers) and servers (websites), and these mechanisms
can be bypassed if one or both endpoints are unaware of
the proxying. For example, modern browsers remember the
certificates of important websites, through a technique called
public-key pinning, and are able to enforce sophisticated
certificate revocation policies through protocols like OCSP,
but these protections no longer apply if the proxy uses its
own certificate. Similarly, a browser or website may require
a modern version of TLS with a strong ciphersuite, but the
proxy may downgrade the connection to use a legacy version
of the protocol. In addition, the high level of trust needed in
the proxying software itself has been undermined by a series
of flaws and attacks on middleboxes [15], [34], [18].

Accountable Proxies. The many vulnerabilities of invisible
proxies stem from their adoption of ad hoc mechanisms based
on misusing the public key infrastructure. An alternative is to
design proxies that are not only visible, but request explicit
authorization from one or both endpoints, and do not interfere
with connections for which they do not have authorization.
This would allow sensitive websites, like those for online
banking, to forbid middleboxes and ensure that their clients’
account details are not visible to any party other than the
user’s web browser. Such accountable designs may even

become mandatory because of privacy laws like the recently
adopted Data Protection Regulation (EU regulation 2016/679),
which requires that personal information pertaining to any
citizen may only be sent, handled, and stored with that
individual’s express consent.

Accountability allows network operators to reintroduce in-
network functionality like caching and compression proxies
over TLS without requiring full trust from clients and servers.
For example, the Keyless SSL proposal from Cloudflare [4],
and the related Lurk draft standard [30], enable server-visible
caching proxies that require the proxy to contact a key server
on every TLS session, allowing the key server to easily
disable proxying based on a variety of server-side policies.
These designs are not without their flaws, and alternative
designs can offer even stronger and provably secure notions
of accountability [4].

A new and radical proxy architecture, called mcTLS, offers
even more fine-grained control over proxies’ behaviors, by
requiring both the client and the server to negotiate and agree
upon the read-write access rights given to each intermediate
proxy. In the rest of this section, we describe this important
new protocol, curently undergoing standardization by ETSI,
and evaluate its security. In particular, we describe several
middlebox confusion attacks against mcTLS and use them
to motivate a rigorous formal analysis of active proxying.

B. The mcTLS protocol
The mcTLS protocol uses the same message formats and

cryptographic constructions as TLS 1.2 (hence the name)
but is a completely new multi-party protocol that modifies
TLS in significant ways. The protocol features a client C , a
server S , and a number of middleboxes situated between them.
The server and the middleboxes are provisioned with public-
key certificates. Each middlebox is given read and/or write
permission to various mcTLS contexts, which are portions of
an application-data stream, such as HTTP bodies/headers. For
example, a firewall middlebox may only have read access for
a particular HTTP header, whereas a caching middlebox may
have write access to the full HTTP response. To enforce these
access rights, the client and server generate read and write
keys for each context and deliver them to each authorized
middlebox over point-to-point TLS-like channels.

Figure 2 depicts the mcTLS protocol when run for a single
middlebox, denoted MW . The handshake consists of three in-
terleaved TLS-DHE (ephemeral Diffie-Hellman) handshakes
that share messages and key material: the primary handshake
between the client and the server, and two intermediate
handshakes between the client and middlebox, and middlebox
and server. The server and middlebox authenticate themselves
on all connections, but the client is unauthenticated. The client
and server exchange nonces NC ,NS and Diffie-Hellman key
shares gx, gy; the middlebox adds its own nonce NMW and
separate key shares gz, gt for use with the client and server.

At the end of the handshake, three sets of channel keys
are computed using the TLS 1.2 key-derivation mechanism:

C MW (CertMW , skMW) S (CertS , skS)

Choose NC
NC ,S−−−−−−−−−−−−→ Choose NMW

NC ,NMW ,S−−−−−−−−−−−→ Choose NS

Choose x, get gx Choose z, t, get gz, gt Choose y, get gy
NS ,NMW←−−−−−−−−−−− Set σzMW = SignskMW

(gz)
NS←−−−−−−−−−−−− Set σS = SignskS

(gy)
and σtMW = SignskMW

(gt)
CertS ,g

y,σS←−−−−−−−−−− Verify CertS , σS
CertS ,g

y,σS←−−−−−−−−−−−−
Verify certs and signatures

CertMW ,g
z,σz

MW←−−−−−−−−−−−
gx−−−−−−−−−−→ gx,CertMW ,g

t,σt
MW−−−−−−−−−−−−−→ Verify CertMW , σtMW

Compute C ↔ S TLS keys ckC ,S Compute C ↔ S TLS keys ckC ,S
Compute C ↔ MW TLS keys ckC ,MW Compute C ↔ MW TLS keys ckC ,MW Compute MW ↔ S TLS keys ckMW ,S

Compute MW ↔ S TLS keys ckMW ,S

Choose SC Choose SS

(KC
r ,K

C
w) = PRF(SC ; NC)

AE(ckC ,MW ;KC
r ,K

C
w)−−−−−−−−−−−−−→ AE(ckMW ,S ;K

C
r ,K

C
w)−−−−−−−−−−−−−→ (KS

r ,K
S
w) = PRF(SS ; NS)

AE(ckC ,S ;K
C
r ,K

C
w)−−−−−−−−−−−−−→ AE(ckC ,S ;K

C
r ,K

C
w)−−−−−−−−−−−−−→

Set FinC = PRF(ckC ,S ; SHash)
FinC−−−−−−−−−−−−−→ FinC−−−−−−−−−−−−−→ Verify FinC

AE(ckC ,MW ;KS
r ,K

S
w)←−−−−−−−−−−−− AE(ckMW ,S ;K

S
r ,K

S
w)←−−−−−−−−−−−−

AE(ckC ,S ;K
S
r ,K

S
w)←−−−−−−−−−−−− AE(ckC ,S ;K

S
r ,K

S
w)←−−−−−−−−−−−−

Verify FinS
FinS←−−−−−−−−−−−−− FinS←−−−−−−−−−−−−− Set FinS = PRF(ckC ,S ; SHash)

Access keys: Access keys: Access keys:
Kr = PRF((KC

r ,K
S
r); NC ,NS) Get Kr,Kw as C Get Kr,Kw as C

Kw = PRF((KC
w ,K

S
w); NC ,NS)

Figure 2: The mcTLS Handshake.

the client and server derive keys from gxy , NC , and NS , the
client and middlebox derive keys from gxz , NC , and NMW ,
the middlebox and server derive keys from gyt, NMW , and
NS . These channel keys are then used to distribute context-
specific read and write keys. The client and server generate
independent context keys, say by applying a key derivation
function to local temporary secrets (SC , SS), and deliver
these keys to each other and to each authorized middlebox.
After delivering the context keys, the two endpoints complete
the handshake by exchanging Finished messages that contain
MACs over the entire transcript as seen by each endpoints
over the two sessions it runs, to ensure that none of the
handshake messages has been tampered with.

Next, the client and server start exchanging application
data; the data stream is divided into fragments, each fragment
is labeled with a specific context and encrypted with the
corresponding context key. Middleboxes that are authorized
to read or write a particular context can then use the
corresponding context keys to decrypt and/or reencrypt these
packets, but not others.

The mcTLS protocol extends and deviates from the
standard TLS 1.2 handshake in many ways. First, it adds
a middlebox negotiation extension to the ClientHello and
ServerHello messages, so that the client and server can
agree upon the sequence of middleboxes they wish to use.
Second, mcTLS reuses nonces and ephemeral Diffie-Hellman
key shares between multiple connections, which is not
recommended but is relatively harmless. Third, mcTLS only
completes a full TLS handshake between the client and server;
the client-middlebox and middlebox-server handshakes do
not include any Finished messages, and so the middlebox
cannot know whether the handshake has been tampered with.
This is a more significant change to TLS, and as we shall

see below, it leads to serious attacks on mcTLS. Fourth,
mcTLS modifies the record-layer protocol to use context
keys instead of channel keys for encryption. This is again
an important change that exposes the protocol to record-
layer attacks. Finally, to reduce server overhead, the mcTLS
authors [33] propose a client key distribution mode where
the client unilaterally generates and distributes context keys
to the server and all middleboxes. As we shall see, this mode
also weakens the protocol and enables attacks.

C. Middlebox Confusion Attacks on mcTLS
To better understand the security guarantees of mcTLS,

let us first consider some of its intended use case scenarios.
In the first scenario, a client C uses a firewall middlebox

MW to protect it from malware on the web. It requires MW
to filter all its connections, including those to a trusted server
S , and those to an attacker-controlled website A . MW has
read access to all incoming data and it imposes different
filtering policies for different websites; in particular, it has
stricter rules for A than for S . The adversary’s goal is to
bypass MW and deliver malware to C .

In the second scenario, a client C uses a caching proxy
MW to speed up its accesses to the web. The proxy retrieves
and caches static pages for a trusted server S as well as an
untrusted server A . When C connects to S via MW and
asks for a specific resource, e.g.GET/login.html, MW looks
in the cache it holds for S and immediately delivers the page
if it is found. The attacker’s goal is to read or write private
user data (e.g.her password) that is sent between C and S .

Note that in both these scenarios, the middlebox MW
makes important decisions based on the identity of the server.
Consequently, if an attacker can confuse the middlebox
about the identity of the server, it can fool the middlebox
into making incorrect decisions. While mcTLS seeks to

C A (CertA , skA) MW (CertMW , skMW) A (CertA , skA) S (CertS , skS)

NC ,S−−−−−−−−−−→ NC ,A−−−−−−−−−−→ NC ,A−−−−−−−−−−→ NC ,S−−−−−−−−−−→
NS←−−−−−−−− NS←−−−−−−−− NS←−−−−−−−− NS←−−−−−−−−

CertS ,g
y,σ←−−−−−−−− CertA ,g

y,σ∗←−−−−−−−−− CertA ,g
y,σ∗←−−−−−−−−− CertS ,g

y,σ←−−−−−−−−
Continue protocol normally, with A forwarding messages between all parties.←−−→

Figure 3: Unknown Key Share Attack on mcTLS Middleboxes.
protect endpoints against malicious middleboxes, the security
analysis of the protocol appears to overlook attacks against
middleboxes themselves, a category of attacks that we call
middlebox confusion attacks.

Poisoning Caches with an Unknown Key Share Attack.
In our first attack, a client C wants to communicate with a
trusted server S through an honest middlebox MW . However,
the network between C and MW is controlled by the
adversary, which interferes with the mcTLS protocol, as
depicted in Figure 3. Importantly, the attacker only modifies
messages that are seen by MW ; it then restores the correct
messages and forwards them to C and S , so that they cannot
detect this tampering.

When C sends its connection request (ClientHello) to
MW , the attacker replaces the identity of S (typically
indicated in the TLS-SNI extension) with its own identity A .
MW then initiates a connection with the attacker’s server, and
A forwards these handshake messages to S . When S returns
its certificate and signature over its key share gy , the attacker
replaces them with its own certificate and signature over the
same server key share. When MW forwards these messages
to C , the attacker intercepts and replaces the certificate
and signature with the original messages sent by S . The
mcTLS handshake proceeds normally to conclusion, since
the transcripts at the endpoints match. The transcript at the
middlebox is quite different, but MW does not send or receive
any Finished MACs in mcTLS, and so it cannot detect the
attacker’s tampering.

At the end of this handshake, the client and server correctly
believe that they have a connection to each other via MW ,
but MW believes that it is proxying a connection between
C and the attacker-controlled website A . This is a form of
unknown key share attack on the middlebox, and even though
the attacker does not know any of the context keys, it can still
mount a serious attack. If the middlebox is a caching proxy,
it will now deliver to C content that was previously retrieved
from the attacker’s website, thereby allowing the attacker to
inject data (and hence JavaScript) into connections between
C and S . Hence, a network attacker can completely break
the server authentication guarantees of caching proxies in
mcTLS.

Bypassing Firewalls using Client Key Distribution. Our
second attack is similar in structure to the previous scenario,
but is exploitable in a different way. This time, the client C
wishes to connect to the attacker’s website A via a firewall

proxy MW . The attacker intercepts the client’s request and
tampers with it to make MW believe that the C wishes to
connect to the trusted server S instead. The attacker then
completes the handshake with the client (using its own key
shares). The connection with S cannot be completed, since
the transcripts at C and S do not match, but if the protocol
uses the client-key-distribution mode, it then unilaterally
generates and sends context keys to A and MW .

At this point, the C correctly thinks it is connected to the
attacker’s server A via MW , but MW thinks it is proxying a
connection between C and S . This is a server impersonation
attack on the middlebox. It allows the attacker to inject
malware to the client, which will not be filtered as strictly as
it should be, because MW thinks that the message is being
sent by the trusted server S . Hence, mcTLS with client key
distribution cannot enforce site-specific firewalling policies.

Record-Layer Attacks. mcTLS modifies the TLS record
protocol to enforce fine-grained access control, but the
resulting protocol is too weak for many use-cases. For
example, an attacker who controls the network between C
and its firewall MW can always inject malware into C ,
bypassing the firewall. This is because mcTLS privileges the
endpoints over the middleboxes, allowing them to read and
write all contexts. So all the attacker has to do is to present
an innoccuous data stream to MW and then it can decrypt,
modify, and reencrypt data between MW and C .

As a more subtle example, consider a scenario where the
attacker has obtained the reading key for some context, by
compromising some middlebox, for instance. Since it does
not have write access, the attacker should not be able to
tamper with the data. However, since a reading context-key
can be used both to verify and to create new MACs, the
attacker can fool honest middleboxes into accepting tampered
data, and then restore the original data before the endpoint
sees it. Hence, even with read-only access, an attacker can
inject data into the caches for trusted servers, or it can cause
firewall protections to be bypassed.

Towards Provably Secure Accountable Proxies. The
mcTLS protocol represents the most robust and flexible
proxying proposal to date, and we believe that its approach
is commendable. The middlebox confusion attacks described
above can be prevented by using stronger variants of TLS,
such as TLS 1.3 or TLS 1.2 with the session-hash extension.
The record-layer attacks are harder to prevent without signif-
icant redesign. The main lesson from our attacks, however,

is that the security guarantees of active proxying scenarios
can be subtle and even well-designed proposals can benefit
from rigorous formal analysis.

III. DEFINING ACCE-AP SECURITY

So, in this section, we formally capture the security guaran-
tees we believe should be attained by secure and accountable
proxying, in the shape of the following authenticated and
confidential channel establishment with accountable proxies
(ACCE-AP) notion.

Using ACCE. Traditional authenticated key-exchange (AKE)
security models [2] aim to prove that obtained session keys
are indistinguishable from random. This is a very strong,
composable guarantee; pseudorandom keys may then be
securely used by any symmetric-key primitive. By con-
trast, Authenticated and Confidential Channel Establishment
(ACCE) security [20] relaxes this, focusing on the security
of the channel obtained by using those keys. An ACCE-
secure key-exchange protocol guarantees that the established
keys are able to construct a secure channel. ACCE security
was designed to capture the complexities of TLS 1.2, whose
key-confirmation step acts as a distinguishing oracle for the
pseudorandomness of the session keys, without damaging
the security of the established channel [25], [8].

TLS 1.3 was designed to (provably) guarantee composable
AKE security, unlike TLS 1.2. Indeed, the session keys in TLS
1.3 are indistinguishable from random, which, coupled with
the security of the authenticated encryption algorithms, should
yield strong, composable security. However, the composition
of AKE and secure record-layer exchanges is not trivial [9].
As a result, proofs such as [13] cannot simply stop at the
key-establishment step. We choose instead to use the ACCE
definitions, which provides no composability, but –in turn–
makes explicit the guarantees of confidentiality, authenticity,
and integrity we may expect of the established channel.

We focus on accountable proxying over secure channels.
A crucial aspect of this is indeed defining what security
(in particular authenticity and integrity) can be guaranteed
at the record layer. That is where the augmented risk of
added middleboxes is most obvious. To highlight this, and to
describe precisely what is lost by giving third parties access
to encrypted traffic, we choose to rely on ACCE security. We
review both AKE and ACCE terminology in the appendix.

On proxy visibility. One implicit assumption of mcTLS and
of our work is that both the client and the server are aware,
when starting the handshake, of all the proxies that can be
found between them. We believe this is a necessary property
when sensitive communication is exchanged between the
client and the server. Indeed, a client might e.g., be more
cautious with the data it requests from a server if it knew
that the traffic is proxied by a middlebox.

In practice, the client and server might not be aware
of all the proxies connected to them, and especially, to

their communication partners. However, it would suffice
to ask those proxies to identify themselves (and request
permissions) in a first protocol step, orthogonal to our design.
No cryptographic requirements would be made of this step:
i.e., we authentication is needed. This will be taken care of
during our protocol.
Notations. Following the approach of Bhargavan et al. [4],
the two-party ACCE notion with mutual authentication will
be denoted 2-ACCE, whereas for server-only authenticated
handshakes we use the notation 2-SACCE. Like Bhargavan
et al., we view the proxied handshake in the presence of
(possibly multiple) middleboxes as a number of linked 2-party
protocols that are executed in parallel.

A. An intuition of the ACCE-AP model

Tuples of 2-party protocols. Our protocol is run by several
parties, which are either clients, or middleboxes, or servers.
We view an n-party session (with one client, one server, and
n−2 middleboxes) as a set of smaller, 2-party sub-protocols,
in which instances of one party play the client or the server
of a traditional 2-party handshake. This is defined as the role
that the party plays in a 2-party execution.

Each party may run multiple concurrent executions of
a 2-ACCE or 2-SACCE protocol: each protocol session is
executed by a party instance. As a consequence, in an n-
party handshake, various instances of the same party maybe
executed at the same time: in some of these the instance will
be a client, in others, a server. The m-th instance of party
Pi is denoted πmi .

Although this may seem restrictive, it is more a matter of
notation: indeed we choose to separate the communication
between, say, the middlebox and the client, and the middlebox
and the server because it is easier to keep track of it. We
do assume that those instances may share state, which is
certainly the case for the TLS handshake.
Instance partnering. Two-party handshakes use the notion
of partnering or matching conversation to define which
instances of two parties execute the protocol together. When
moving from 2- to multi-party handshakes, a crucial notion
that extends partnering is that of session binding, defining
which 2-party handshakes take place as part of the same
multiparty handshake. The binding is established through
stored local information on direct communication partners,
but also global information describing the configuration of
the handshake, the parties acting as endpoints, the precise
proxies used, and their access rights. In our model, all the
parties involved in the handshake need to keep track of
some cumulative attributes. Since the endpoints control
the handshake, they also additionally need to store master
parameters, such as the access rights of each middlebox. We
refer to the endpoint instances that authenticate the master
parameters by master instances.
Configurations and contexts. Session binding is defined in

terms of a handshake configuration, which is a suite of party
identities ordered from the client to the server. We always
assume that the client remains anonymous in the handshake,
i.e., it always runs server-only authenticated handshakes. The
middleboxes may play the role of either client or server, but
always authenticate to their partner.

We divide each message into disjoint contexts, following
mcTLS terminology. The list of all possible contexts is
denoted Γ. Contexts can be defined, e.g., as the concatenation
of the message type (either request or response) and a message
fragment (the header, the body, or a fragment thereof). Thus,
one context could be “request | header”.

Each middlebox will have some read, write, or none access
permissions on the defined contexts. We assume that entities
which have write permissions for a given context may also
read those contexts.

ACCE-AP security. We capture the security of the
accountably-proxied secure-channel establishment protocols
(called ACCE-security with accountable proxies – in short,
ACCE-AP) in terms of the following requirements:

The (S)ACCE security of each independent, 2-party hand-
shake, when the two partners are honest;
The soundness of the configuration in these 3 cases:

Fully honest. If all parties are honest, then all the in-
stances are properly coupled, and all parties finish the
configuration successfully, with all the appropriate keys.
Malicious MW . No collusion of malicious proxies learn
anything about keys they have no right to.
Malicious endpoint. If an endpoint behaves maliciously
w.r.t. the established configuration, contexts, or permis-
sions, this will be detected by the remaining participants.

B. The ACCE-AP model

In what follows, we formalize configurations, permissions,
and contexts as described above.

Oracles in ACCE-AP. Let k be an arbitrarily fixed integer.
We consider AKE protocols executed between a client,
a server, and up to k − 2 middleboxes. More formally
a handshake configuration HConfig is a list of parties
P1, . . . ,Pk, such that P1 is a client, Pk is a server, and
the remaining parties are middleboxes. The configuration is
ordered so that conversation will be forwarded in increasing
order of indices for request messages, and inversely for the
response.

Moreover, in each handshake, each of the proxies is associ-
ated with a list of contexts and corresponding permissions, as
formalized below. For any configuration HConfig of size k, its
corresponding contextual access list aclHConfig is a hash-table
of size k− 2, indexed by middleboxes in that handshake. For
a given proxy Pi, the entry in aclHConfig corresponding to Pi
is a list of length |Γ| which, for each context c, contains the
permissions (i.e., exactly one value amongst none, read,
orwrite) given to Pi for that context c.

As explained, a proxied handshake consists of a number of
parallel AKE sessions executed concomitantly. Each session
is run between two instances, one for each of the two
communicating parties. The number of executions per proxied
handshake is protocol-specific: mcTLS for instance ran three
sessions for the 3-party case, and six for the 4-party case. The
multiple parallel sessions are also taken into account by our
modification of the traditional NewSession oracle (presented
in the Appendix).

Party attributes. Following the ACCE model, parties keep
track of values such as their long-term secret keys, while
party instances store session-specific values, e.g., session and
partner identifiers, the secret bits used by the Encrypt and
Decrypt oracles, and established keys. These attributes are
described in detail in Appendix C.

Instance-local ACCE-AP attributes. In addition to typi-
cal ACCE attributes, presented in the Appendix, the following
attributes are specific to sole party instances:
πmi .bid.The binding identifier πmi .bid of an instance πmi is a
special session-identifier that ties πmi to a proxied handshake.
Its value is set upon configuration acceptance. Note that
πmi .bid could differ from the same instance’s session identifier
πmi .sid3.
πmi .β. The configuration-acceptance bit πmi .β of instance
πmi takes values in {0, 1,⊥}. Initially, πmi .β is set to ⊥.
If πmi accepts the configuration input to NewSession, then
πmi .β is set to 1; in case of rejection, it is set to 0.

Cumulative ACCE-AP attributes. Cumulative attributes
store the partnering, session, and binding information of all
the instances of a given party taking part in a single handshake
(which we call siblings).
πmi .siblings. The siblings πmi .siblings of instance πmi are all
the instances of Pi output by the NewSession oracle that
generated πmi , including πmi itself.

Cumulative attributes are inherent to k-party handshakes;
they are needed to established accountability.
πmi .c.pid. The cumulative partner identifier πmi .c.pid of an
instance πmi is a table of entries of the type (πni , π

n
i .pid),

for each πni ∈ πmi .siblings.
πmi .c.bid. The cumulative binding identifier πmi .c.bid of an
instance is a tuple of binding identifiers π`i .bid. Each identifier
π`i .bid corresponds to one instance π`i ∈ πmi .siblings, i.e.,
πmi .c.bid is (π`i .bid)π`

i∈πm
i .siblings.

πmi .c.config. The cumulative configuration πmi .c.config of a
proxy instance πmi stores the configuration it has accepted for
a given handshake. This attribute is middlebox-specific. End-
points will store a master configuration attribute πmi .m.config
(see below).
πmi .c.perm. The cumulative permission attribute πmi .c.perm
is a list of |Γ| elements, each taking a single value in the set

3Both the partner and session identifiers are protocol-specific, and typically
include public and private information that makes each session unique.

{none, read,write}. This value represents the permission Pi
has on the corresponding context. If Pi ∈ C ∪S , then all
permissions are set to write.
πmi .c.ctxt.keys. The cumulative context-key list
πmi .c.ctxt.keys consists of |Γ| elements, each of them
a tuple of values corresponding to the read and write keys
for a given context (or ⊥ if the value is unavailable). All
sibling instances of a configuration-accepting party Pi share
the same keys; if moreover Pi ∈ C ∪S , all the keys are
non-⊥.

Master ACCE-AP attributes. Only stored by the hand-
shake’s endpoints, these attributes keep track of information
on the handshake configuration and all the access-rights
pertaining to the proxies. Thus, endpoints will be able to
enforce accountability for all proxies.
πmi .m.config. The master configuration attribute is the
endpoint equivalent to the middleboxes’ π.c.config. For an
endpoint instance πmi accepting the configuration HConfig,
πmi .m.config stores HConfig if it is the configuration for
which NewSession was run.
πmi .m.perm. The master permission-list attribute
πmi .m.perm stores, for each of the k − 2 middleboxes
input to NewSession, their permissions per context if they
correspond to the aclHConfig value input to NewSession.
Permissions are listed in the tabular style of aclHConfig.
πmi .m.bid. The master binding identifier πmi .m.bid is a list of
tuples indexed by parties Pj in the configuration, containing
binding identifiers π`j .bid of instances π`j involved in that
handshake. We include Pi’s values as well; in particular,
πmi .bid is also included.
πmi .µ. The master configuration-acceptance bit πmi .µ of a
master instance πmi , with Pi ∈ C ∪S is a value {0, 1,⊥}.
Initially πmi .µ is set to ⊥, and may later change to 1 or 0,
depending on whether that master instance has validated a
given configuration or not.
πmi .m.ctxt.keys. The master context key list πmi .m.ctxt.keys
is a list of |Γ| pairs of read and write keys, one for each
possible context.

Partnering. We extend 2-party partnering to our proxied
case in Def. 1. For an instance πmi we require two sets: a
set πmi .PSet of entities partnered to πmi (incl. Pi), and a set
πmi .InstSet of instances partnered to πmi (incl. πmi).

Definition 1. (Partnering in ACCE-AP.) Let πmi be an
instance of Pi. We define πmi .PSet and πmi .InstSet as:

If Pi ∈ C ∪ S , πmi .InstSet contains all instances πnj
such that πnj .bid ∈ πmi .m.bid (incl. πmi). The set πmi .PSet
includes all Pj with instances in πmi .InstSet (incl. Pi).
Let Pi ∈ MW . Find the unique πnj .m.bid of a party
Pj ∈ C ∪ S such that πmi .bid ∈ πnj .m.bid. The set
πmi .InstSet is equal to the set πnj .InstSet (computed as
in the previous bullet point), and πmi .PSet := πnj .PSet.

Correctness. We cannot limit the correctness of proxied

handshakes to the correctness of partnering and keys. Indeed,
we will also need to account for the aspects of session binding,
cumulative and master configurations, and proxy permissions.

Definition 2. (Correctness). Consider a handshake executed
for a configuration HConfig and a contextual access list
aclHConfig. Consider the parties Pi ∈ HConfig and their
instances in this handshake. The following conditions must
hold simultaneously:
A. Partnering correctness. This is three-fold:

Instances. For each instance πmi , there must exist an
instance of πmi .pid whose session identifier sid equals
πmi .sid (the instance’s partner is in that handshake).
Parties. All instances of Pi correctly accumulate the
partner- and session-information of their siblings (cumula-
tive attributes are consistent w.r.t. each sibling’s partnering
and session information).
Configuration. Consider a NewSession query outputting
instances πnj , including master instances πmi of endpoints
Pi (client or server), and middlebox instances π`k of
middleboxes.
We require: (i) All instances accept partner authentica-
tion and the handshake configuration; (ii) all accepting
instances store the same configuration; (iii) the master
binding identifier of master instances πmi includes exactly
twice the binding identifier πnj .bid of each instance πnj
output by the same NewSession query (this includes the
binders of Pi)4.

B. Access-control correctness. We require the consistency
of permissions allowed by the endpoints to all middleboxes.
Consider a NewSession query yielding a handshake for which
the instances complete in an accepting state. The following
must hold simultaneously:

Master context. The master permission set πmi .m.perm
of both endpoints coincides to aclHConfig.
Middlebox context. The permissions for the handshake
stored by each proxy, stored in πmi .c.perm, must be
consistent with those given in aclHConfig.

C. Key correctness. Partnered instances are also required to
compute the same channel keys, and all read/write keys for
a given permission must coincide.

Channel keys. Instances with the same session identifier
compute the same channel key πmi .ck.
Master keys. All master instances compute the same
master context keys.
Middleware keys. Each middlebox stores keys consistent
with the permissions and context keys of master instances.

ACCE-AP security. We define security in terms of security
games played by an adversary against a challenger. The
adversary will have access to a number of oracles including

4Each binder is stored twice because our handshakes consist of tuples of
2-party handshakes.

traditional 2-ACCE oracles (described in the Appendix).
However, we modify the NewSession oracle to take into
account the transition from 2 to k parties:
NewSession(HConfig, aclHConfig). The query takes as in-
put a handshake configuration HConfig and a contextual
access list aclHConfig. The output is a list of k sets of
tuples (πji , π

j
i .ρ, π

j
i .pid). Each set {(πji , π

j
i .ρ, π

j
i .pid)}`ij=1

corresponds to a party Pi in the HConfig. Here `i ≥ 1 is
public, but not adversarially-fixed; it depends on the protocol
and number of participants5. Each set {(πji , π

j
i .ρ, π

j
i .pid)}`ij=1

is a series of oracle-instances πji (with roles ρ and partner
identifiers pid) of the party Pi.
The remaining, ACCE-like oracles we use are:
Send. The adversary uses this oracle to send a message to a
given, existent instance, forwarding its reply.
Reveal. This oracle allows the adversary to learn the channel
keys of a given party instance.
Corrupt. By this oracle, the adversary corrupts either mid-
dleboxes or servers, obtaining their long-term keys.
Encrypt. This is a left-or-right oracle, which allows the
adversary to encrypt one of two possible messages of equal
length, depending on a hidden bit b.
Decrypt. This oracle allows the adversary to decrypt only
ciphertexts not returned by Encrypt.

The security properties. We define the security of a proxied
handshake in terms of three properties: instance entity-
authentication, instance channel-security, and configuration
soundness. The first two are backward compatible with
traditional 2-party (S)ACCE models, with a difference in
the partnering. In the ACCE-AP model, each instance has
more partners, none of which can be corrupted.

Each game will begin with a setup phase, in which all
the nP parties are instantiated, with corresponding long-
term keys and certificates, returning the public parameters
to the adversary A . The adversary’s winning advantage is
quantified over the randomness of all participants.

Definition 3. (Entity Authentication). In the entity authen-
tication game, after setup, A is given arbitrary access to the
new NewSession oracle above, and also to Send, Corrupt,
and Reveal. Finally A halts, and wins if there exists an
instance πmi such that all the following conditions occur:
– πmi has ended in an accepting state: πmi .α = 1, with
partner πmi .pid = Pj ∈MW ∪S ;
– No party in πmi .PSet (partnered to πmi) is corrupted;
– There exists no session πnj partnered with πmi (πnj 6∈
πmi .InstSet).
The adversary’s advantage is its success probability.

Definition 4. (Channel Security). For channel security, after
setup, A is given access to the new NewSession oracle and

5If `i = 1, the output coincides with what would be returned by the
standard NewSession query for each participant Pi.

to Send, Corrupt, Reveal, Encrypt, and Decrypt. Whenever
a new instance πmi is created via NewSession, the attribute
storing the secret bit used in Encrypt, denoted πmi .b, is chosen
uniformly at random. Finally, A halts, outputting a tuple
consisting of an instance πmi for Pi ∈ C and a guess-
bit d. We say A wins if the following conditions occur
simultaneously:
– πmi .b = d;
– No Corrupt query was made on any party in πmi .PSet;
– No Reveal query is made on instances in πmi .InstSet.
A ’s advantage is defined as

∣∣pA − 1/2
∣∣, where pA is A ’s

success probability.

Configuration soundness. We now describe a new security
property capturing configuration soundness with respect to
the input of NewSession. Configuration soundness has three
components, formalized separately: (1) the soundness of the
configuration w.r.t. fully-honest partners; (2) the soundness
of the access-control-key distribution in the presence of cor-
rupted middleboxes (and honest endpoints); (3) the soundness
of the key-distribution even for a corrupted endpoint. We do
not consider security against a collusion between endpoints
and middleboxes: as soon as such a collusion occurs, we can
guarantee practically no security for the middleboxes situated
between the two colluding partners. Instead, the security level
becomes somewhat equivalent to that of a smaller handshake,
in which the colluding middlebox acts as the endpoint.

The three games begin with the setup described above.
Then, A is given access to the new NewSession oracle and
also to Send, Corrupt, Reveal, Encrypt, and Decrypt.

Definition 5. (Config. soundness: partnering). The game
is played as above. The adversary ends by outputting a
master instance πmi , with Pi ∈ C , ending in an accepting
state with respect to its configuration, i.e., πmi .µ = 1. Let
πnj ∈ πmi .InstSet be such that Pj ∈ S , πmi .sid = πnj .sid
and πnj .µ = 1. We write HConfig for the configuration input
to the NewSession query that outputs πmi . The adversary
wins if the following conditions occur simultaneously.
I. No Corrupt query was made on parties in πmi .PSet;
II. No Reveal query is made on instances in πmi .InstSet.
III. One of the following conditions occurs:
a. The master configuration πmi .m.config 6= πnj .m.config,

or πmi .m.config = πnj .m.config 6= HConfig;
b. The cumulative configuration of middlebox instances π`k ∈
πmi .InstSet differs from πmi .m.config or HConfig;

c. There is an instance π`k ∈ πmi .InstSet such that π`k.bid 6∈
πmi .m.bid;

d. There is an instance π`k ∈ πmi .InstSet s.t. π`k.β = 0.

Condition (III.d) sometimes implies (III.c): it does for our
protocol. However, this is not always true: the binding of
all instances π`k ∈ πmi .InstSet could be correct, but there
may exist an instance π`k ∈ πmi .InstSet that rejects that
configuration, that is πnj .β = 0.

Definition 6. (Config. soundness: malicious MW). The
game is played as above. The adversary will output, in a test
phase, a tuple consisting of an instance πmi with πmi .µ = 1
and a context ctxt, such that Pi ∈ C and there exists an
instance πnj ∈ πmi .InstSet such that Pj ∈ S and πmi .sid =
πnj .sid. The challenger will output either the true context key
Kctxt in πmi .m.ctxt.keys or a random key of the same length,
according to a hidden bit b. Then A may continue querying
oracles, finally outputting a bit d, winning if the following
occurs simultaneously:

– d = b;
– All instances π·i ∈ πmi .InstSet end in an accepting state
with respect to the configuration, i.e., π·i.β = 1;
– No Corrupt query was made on any Pk ∈ πmi .PSet s.t. ctxt
is registered as a permission for Pk in aclHConfig;
– No Reveal query is made on instances in πmi .InstSet.

Finally, we guarantee that honest middleboxes accepting
the configuration cannot distinguish from random the keys
they are not entitled to, even if one endpoint is malicious.

Definition 7. (Config. soundness: malicious endpoint). The
game is played as above, and A eventually halts. It wins
if there exists a client or server instance πmi storing a
configuration πmi .m.config s.t. the following conditions apply
simultaneously.

– All instances π·j for Pj ∈MW ∩ πmi .PSet accepted the
configuration;
– Parties Pj ∈MW ∩ πmi .PSet are uncorrupted;
– No Reveal query is made on instances in πmi .InstSet.
– One of the following two conditions holds:
• If Corrupt was queried on a server Pk ∈ {S ∩
πmi .m.config} (with Pk 6= Pi), then the following holds
simultaneously: (a) Pi ∈ C ; (b) there are instances
π`i , π

s
k ∈ πmi .InstSet with π`i .sid = πsk.sid; (c) all

instances πti ∈ πmi .InstSet ended in an accepting state
w.r.t. the configuration, i.e., πti .µ = 1; (d) there exists
Pj ∈MW ∩πmi .PSet and some instance πzj ∈ πmi .InstSet
with π`i .m.perm 6= πzj .c.perm.

• If no Corrupt query is made on the server Pk ∈ {S ∩
πmi .m.config}, then the following holds simultaneously:
(a) Pk = Pi (the party Pi was the handshake server); (b)
all instances πzi ∈ πmi .InstSet accepted the configuration
(πzi .µ = 1); (c) there exists Pj ∈MW ∩πmi .PSet and an
instance πtj ∈ πmi .InstSet s.t. πmi .m.perm 6= πtj .c.perm.

IV. AN ACCE-AP-SECURE DESIGN

We now propose a protocol that is provably ACCE-AP se-
cure. In fact, we introduce a generic design, to be instantiated
with one or multiple accountable proxies. For one middlebox,
this yields Figure 4; a 2-middlebox case is presented in the
full version. In Appendix B, we also depict how to optimally
apply our design to TLS 1.3.

A. The ACCE-AP-secure Protocol Construction Π

We denote by Π a generic secure-channel establishment
protocol with accountable proxies, like the one in Figure 4.
We use a modular construction, with a careful composition
of independent, unmodified 2-party protocols guaranteeing
slightly more than 2-party SACCE and respectively ACCE-
security.

Our protocol consists of three phases: 2-ACCE, binding,
and access-control.
2-ACCE Phase. This phase consists of running a number
of parallel 2-SACCE and ACCE sessions, thus establishing
channel and exported keys. Although not standardly output
by AKE protocols, exported keys feature in many real-world
AKE protocols, including TLS 1.3 (which standardizes an
exporter secret)6.

Each party in the protocol starts the following instances:
Transport instances. These instances are run by each
entity with its direct neighbor(s): the endpoints only open
one such instance, whereas each middlebox opens two.
After successful completion, the transport sessions are
used to securely exchange binding and access-control
information. They also serve as an outer channel for record-
layer message-exchanges.
Master instance. Only the client and the server open one
such instance (irrespective of how many proxies take part
in the handshake). In this session, the configuration and
access control data are agreed upon, and the read/write
keys are computed.
Key-transfer instance. Finally, each endpoint must open
one instance to each middlebox it is not directly connected
to via a transport session. Key-transfer instances are
used to provide access-control keys and confirm the
configuration with the middlebox so that the latter may
accept or reject the handshake.
For the 1-middlebox case in Figure 4, the key transfer

is done in the transport sessions: the client, the middlebox,
and the server each open precisely two instances, yielding
two transport sessions and the master session. For two
middleboxes, each party opens three instances: the endpoints
create one transport instance (which also serves to transfer
keys to the closest proxy), one key-transfer instance (to the
farthest middlebox), and the master instance. Each proxy
opens two transport sessions (one to the neighboring endpoint,
one to the second middlebox) and one key-transfer instance
(to the non-neighboring endpoint).

Note that each instance will first need to finish in an
accepting state with respect to authentication before the
binding phase proceeds.
Binding Phase. We bind sibling instances together by using
the exported keys output in each of the parallel sessions.

6The TLS 1.2 key exporter construction [11] is insufficient: we will need
our exported keys to be unique (for instance, they could depend on the full
session hash, not just the nonces).

C MW (CertMW , skMW) S (CertS , skS)

2-SACCE C ↔ MW←−−−−−−−−−−−−−→ 2-ACCE MW ↔ S←−−−−−−−−−−−−−−→
Compute: ck1, ek1 Compute: ck1, ek1 Compute: ck2, ek2
t1 = PRF(ek1; “e.sid”; SHash) Compute: ck2, ek2 t2 = PRF(ek2; “e.sid”; SHash)

Get t1, t2
AE(ck1;t1,t2)←−−−−−−−−−−−−−−− AE(ck2;t1,t2)−−−−−−−−−−−−−−−→

2-SACCE C ↔ S←−−→
Compute: ck3, ek3, t3 Compute: ck3, ek3, t3

Verify that:
AE(ck3;(t2,t3),HConfigS ,ctxtS ,PermS)←−−

(t2, t3) are compatible
HConfigS = HConfigC

ctxtS = ctxtC
PermS = PermC

Else abort.
AE(ck3;(t1,t3),HConfigC ,ctxtC ,PermC)−−→ Mirror client for verification

Set:
lbC = ((t1, t2, t3),HConfigC , ctxtC ,PermC) Set lbS as C did.
Compute config. keys: Compute config. keys:
Ki = PRF(ek3; ctxti; lbC‖SHash) Ki = PRF(ek3; ctxti; lbS‖SHash)

Set: KC
MW = {Ki|ctxti ∈ PermC [MW]} Set: KS

MW = {Ki|ctxti ∈ PermS [MW]}
AE(ck1;HConfigC ,K

C
MW)−−−−−−−−−−−−−−−−−→ Check:

AE(ck2;HConfigS ,K
S
MW)←−−−−−−−−−−−−−−−−−

KC
MW = KS

MW

HConfigC = HConfigS

HConfigC OK with MW
Else abort

AE(ck1;Accept)←−−−−−−−−−−−−−−−−− AE(ck2;Accept)−−−−−−−−−−−−−−−−−→

Record Layer

AE(ck1;AE(K
read,Kwrite;m))−−−−−−−−−−−−−−−−−→ Decrypt with ck1

Filter (see Perm) to m̂
AE(ck2;AE(KMW ;m̂))−−−−−−−−−−−−−−−−−−→ Decrypt with ck2, (K

read,Kwrite)

Figure 4: Our generic, ACCE-AP-secure protocol Π, illustrated with a single middlebox

Each session’s binding identifier is output by a pseudorandom
function (like HKDF) keyed with an exported key, on input
a label concatenated with that session’s hash. It is essential
for configuration soundness that the middlebox and server
can verify that they are talking to the same client (since
the client instances have so far been independent). We force
the client to prove its knowledge of its instance binders to
the server, and give it the binder for the remaining sessions;
this will enable the two endpoints to agree on configuration
and access-control details for that handshake. Both endpoints
must agree on a configuration and an access control list
before proceeding to the next phase.

In Figure 5, the binding identifiers are the values
t1, t2, t3, computed from the exported keys and the tran-
script hashes, as the output of a PRF instance, i.e., ti =
PRF(eki; “e.sid”; SHash). Each values ti (i ∈ {1, 2, 3}) is
stored individually in an π.bid, while π.m.bid stores all three
of them.
Access-Control Phase. Finally, the endpoints each compute
the access control keys for the handshake by running the same
PRF as before, keyed with the exported keys of the master ses-
sion, on input a label describing the context, and the transcript
hash. More precisely, for a context ctxti and permissions
a, the label lbP

i is a string ctxti|a. The access control keys
are computed as Ki = PRF(ek3; ctxti; lbP

i ‖SHash)). Each
middlebox receives the handshake configuration, one set of
keys from the client, and one from the server, over a direct,

secure channel (a key-transfer or a transport session). The
middlebox verifies that its view is consistent with the received
configurations, and that the keys sent by the endpoints
coincide. If either verification fails, the middlebox rejects
the configuration. Otherwise, it accepts the configuration and
sends a message to that effect to the endpoints. Only then
do the endpoints end in an accepting state, as well.

B. Security analysis

We first discuss the security assumptions we make on our
primitives. Then, we state the security of our generic design
for accountable proxying, given in Figure 4; due to lack of
space, we leave the full proofs of these to the full version.
Security assumptions. The security of our protocol will
require a 2-SACCE secure authenticated key-exchange (AKE)
protocol Π1 between the client and the middlebox, a 2-ACCE
secure AKE protocol Π2 between the middlebox and the
server, and a 2-SACCE secure AKE protocol Π3 between
the client and the server. Notably, Π1 and Π3 offer unilateral
authentication, whilst Π2 is mutually authenticated.

For i ∈ {1, 2, 3}, let Ψi denote the extension of Πi to a
protocol Ψi(Πi) that runs Πi, outputting ck, but in addition
outputs an export key ek. We require that the export keys
output Ψi(Πi) be indistinguishable from random, and in
addition, that no PPT adversary (with access to the usual
2-party oracles NewSession, Send, Reveal, Corrupt) can find
two non-partnered sessions for which the output export keys

are identical, even if A can corrupt all servers (for the SACCE
protocols) and all parties (for the ACCE protocol). We call
the latter property pseudo-uniqueness of ek.

Our main reason for this assumption on the export keys
is our notion of binding. We need to ensure that each
configuration yields a unique set of binders even when
a legitimate party in the handshake misbehaves. Such a
condition helps us bypass e.g.attacks of the triple-handshake
kind, like those on mcTLS shown in Section II-C. Two
important aspects should be mentioned, regarding the pseudo-
uniqueness assumption: (1) it is non-standard in AKE security
(though interestingly it holds for TLS 1.3); (2) we do not
require this same condition for the channel keys ck.

We do not demand pseudo-uniqueness of channel keys
since they play no part in binding. As we do not consider
resumption, or other short-cuts needing stronger keys, we
only need channel keys be pseudo-random.
The ACCE-AP-security of the 1-middlebox-version of
Π. We provide two security theorems for the multicontext
handshake proposed in Figure 4: Theorem 1 captures entity
authentication and channel security, and Theorem 2 captures
configuration soundness (in its three aspects). The proofs are
described in the full version.

Theorem 1. Let Π be protocol in Figure 4, for which
Π1,Π2,Π3 and Ψ1,Ψ2,Ψ3 are defined as above. If Π1,Π3

are 2-SACCE secure, and Π2 is 2-ACCE secure, then:
– Π guarantees ACCE-AP entity authentication and
channel security;

Theorem 2. Let Π be the protocol in Fig. 4, for which
Π1,Π2,Π3 and Ψ1,Ψ2,Ψ3 are defined as above. If: (1)
Π1,Π3 are 2-SACCE secure and Π2 is 2-ACCE secure; (2)
Ψ1,Ψ2,Ψ3 extend Π1,Π2,Π3 to also yield export keys ek
which are indistinguishable from random and pseudo-unique;
(3) the KDF used to compute t1, t2, t3 is a secure PRF;
(4) the hash function used for the recurring session hash is
collision-resistant, then:

– Π is configuration sound w.r.t. partnering, malicious
middleboxes, and malicious endpoints.

These theorems informally guarantee 4 properties: a
network adversary cannot convince an (honest) party it is
part of a different configuration than is actually the case; all
access-control keys are correctly distributed (middleboxes get
the keys they are entitled to, and no collusion of malicious
middleboxes can learn anything about keys it is not entitled
to know); middleboxes can detect malicious behavior in
one endpoint (with respect to the permissions); no network
adversary can learn anything about the messages sent at the
record layer of our multicontext handshake.

The security of the handshake, however, makes no guar-
antee w.r.t. the integrity and authenticity of messages sent
at the proxied record layer. The secure-channel statement
guarantees the integrity and authenticity of messages, but only

within a two-party session. To capture integrity on the end-
to-end record layer, we need to consider the functionalities
and permissions of the middleboxes. We do so next.
Record-layer security. For a middlebox MW and a message
fragment m (as given by the division into contexts), let
m′ = MW (m) be the message m′ obtained by the honest
modification of m by MW . Note that m′ could be the same
as m, a correctly formatted message other than m, or it could
also be an error message ⊥.

For the one-middlebox case, we can prove the following
result w.r.t. record-layer security. The case of several middle-
boxes will be discussed in the full paper, since it presents
more problems.

Theorem 3. For any handshake of the protocol in Figure 4,
for all instances ending in an accepting state w.r.t. the
configuration, for all contexts, consider a message-fragment
m sent from one endpoint (which we will call sender) to the
other endpoint (here called the receiver). Assume that the
receiver receives a ciphertext c∗, for which it accepts the
authentication of the message, decrypting it to a message
fragment m∗. Then:

– If the middlebox is corrupted, but has read-only permis-
sions for the context corresponding to fragments m,m∗,
then m∗ = m.
– If the sender is corrupted, but the receiver and middlebox
are honest, then m∗ = MW (m).

We can make no integrity and authenticity statement for
a corrupted middlebox with write access. However, this is
a flaw inherent to using read and write keys. The second
guarantee in Theorem 3 is something no SSL inspection
method, including mcTLS, has so far provided. Indeed, our
double-encryption thwarts the middlebox-bypass attack we
presented in Section II-C. This is a useful guarantee, as it
ensures that honest proxies always perform their due tasks
on messages sent to them, even by a dishonest endpoint.
Enhancing integrity. We could also make this integrity
guarantee stronger, and ensure, like mcTLS, that a message
that is sent unchanged from the honest sender to the honest
receiver can be distinguished from a message that modified
by a potentially-malicious middlebox with write access. This
is easily done by adding a MAC, under, e.g., a key derived
from the export key of the master session under a new label.
At the record layer, instead of just sending an authenticated
encryption under the read and write key of a message, we
could also add a MAC of that same message computed with
the write key for that fragment. We choose to avoid this
overhead, since the guarantees we can offer for the record
layer are anyway limited.

C. Prototype Implementation

We built a proof-of-concept implementation of the
ACCE-AP-Π protocol instantiated with TLS 1.3, as per

depicted in Fig. 5. Our implementation is based on the
miTLS [7] library, an implementation of TLS 1.3 (draft 23)
in F? [37]. We prefer to use miTLS over more mainstream
implementations, such as OpenSSL, for several reasons:

• miTLS is written in a modular way, with well-contained
local state in the various modules (e.g., the key schedule,
negotiation module, handshake state-machine); this
simplifies the writing of protocol extensions, in par-
ticular when multiple handshakes must be managed
simultaneously, compared to implementations with large
amount of ambient state. miTLS has been previously
used for similar purposes within the FlexTLS tool [12];

• miTLS is designed to enable formal verification. The
miTLS implementation of TLS 1.3 is under active
development, but the security and correctness of many of
its components have been formally proved, including the
underlying cryptographic library [38] and the the record
layer [5]. Currently, the miTLS implementation does
not prove pseudo-uniqueness of exporter keys (which
we rely on in our security proofs), but we believe that
the key schedule contains all the necessary elements for
such a proof, based on the PRF assumptions on HKDF
and on the PRF-ODH assumption already in place for
key indistinguishability, and that it is likely to be added
in the future by the miTLS authors.

Our main change to miTLS is the addition of a new content
type and record sub-protocol, which is used for the (t1, t3)
and (t2, t3) exchanges and for transmitting KC

MW and KS
MW .

Using a separate content type means that those messages
are invisible to the miTLS handshake and do not interfere
with its internal invariant and state machine (in particular, the
transcript hashing and post-handshake messages). Similarly,
these extra messages do not interfere with the flow of
application data, following the multi-stream model of the
miTLS record [5], and so do not interfere with the current
application guarantees of miTLS.

Our changes are mostly contained to two files within
miTLS: the top-level interface (TLS.fst) and the new middle-
box sub-protocol (Middlebox.fst). Only minor changes are
needed to the handshake to give access to the exporter secret-
keyed PRF to the middlebox protocol. Our total changes
consist of under 1000 lines of F?code, which is less than 5%
of the miTLS protocol code. Our prototype implementation
is available on Github as a branch of the miTLS repository.7

We note that this prototype is restricted to a single middlebox
whose certificate is known in advance to the client and server,
and which has full read and write permissions.

To test our implementation, we use the simple HTTP
client/server tool provided by miTLS. For the middlebox, we
created a new application that exercises the new options
added to the top-level interface TLS.fst. Our middlebox

7https://github.com/mitls/mitls-fstar/tree/middlebox

is configured to read and display the traffic, but otherwise
performs no function.

We measured the performance of our code when using
AES128-GCM record algorithm, HKDF-SHA256 for the key
schedule, Curve25519 for the Diffie-Hellman key exchange,
and ECDSA on the NIST P-384 curve with SHA-384 for
the server and middlebox signatures. We measure a marginal
increase in connection time (35ms→ 38ms), but a significant
throughput loss of about 40% (516MB/s → 299MB/s) in our
experiment, compared to a direct connection between the
client and server.

The latency increase is caused by the additional Diffie-
Hellman computation at the middlebox, and disappears when
PSK or 0-RTT is used. The decrease in throughput is
primarily due to the re-encryption overhead, which is done
sequentially in our prototype. We believe this overhead can
be mitigated by parallelizing encryption and decryption on
the middlebox.

V. CONCLUSIONS
In this paper, we proposed a new security definition,

as well as a modular, provably-secure construction of an
accountably-proxied secure channel. We hope that our design
will provide a better example of how accountability can be
achieved without harming the authenticity and integrity of the
underlying channel. However, our formal model/definitions
are complex, and –even so– we achieve limited record-layer
guarantees in multi-middlebox setting. This illustrates the
intuitive principle that the more middleboxes are interspersed
between the client and the server, the weaker the security
of incoming and outgoing messages becomes. If many
(potentially-malicious) middleboxes are present, the endpoints
may no longer rely on each of the proxies to inspect the traffic.
As our analysis suggests, the most important middlebox
should then be placed closest to the server to guarantee
its functionality is observed.

Finally, our proposed protocol design is not meant to
encourage widespread active proxying. Instead, we hope
to have shown that, beyond the loss of end-to-end security
inherent to proxying, it is difficult to construct a proxied
handshake in a sound way. The integrity and authenticity
properties of the record layer degrade quickly with the number
and position of the corrupted middleboxes, and schemes with
more than two proxies are not very efficient. As such, our
results indicate that care should be taken before introducing
a middlebox, and for sensitive end-to-end communications,
they should preferably be eliminated.

ACKNOWLEDGEMENTS

P.-A. Fouque, K. Bhargavan, and C. Onete are grateful
for the support of the ANR through grant 16 CE39 0012
(SafeTLS). I. Boureanu was in part funded by the Marie
Skłodowska-Curie grant No 661362 under EU’s Horizon
2020 programme. K. Bhargavan received funding from
the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme
(grant agreement no. 683032 - CIRCUS).

REFERENCES

[1] S. Alt, P. Fouque, G. Macario-Rat, C. Onete, and B. Richard.
A cryptographic analysis of UMTS/LTE AKA. In Proceedings
of ACNS, volume 9696 of LNCS, pages 18–35. Springer, 2016.

[2] M. Bellare and P. Rogaway. Entity authentication and key
distribution. In Advances in Cryptology — CRYPTO, pages
232–249, 1993.

[3] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models
and reference implementations for the TLS 1.3 standard
candidate. In Proceedings of S&P, pages 483–502. IEEE,
2017.

[4] K. Bhargavan, I. Boureanu, P. Fouque, C. Onete, and B. Richard.
Content delivery over TLS: a cryptographic analysis of Keyless
SSL. In Proceedings of Euro S&P, 2017.

[5] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
J. Pan, J. Protzenko, A. Rastogi, N. Swamy, S. Zanella-
Béguelin, and J. K. Zinzindohoué. Implementing and proving
the tls 1.3 record layer. Appears in IEEE S&P (Oakland),
2017. Cryptology ePrint Archive, Report 2016/1178, 2016.
http://eprint.iacr.org/2016/1178.

[6] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and
P.-Y. Strub. Triple handshakes and cookie cutters: Breaking
and fixing authentication over TLS. In Proceedings of IEEE
S&P 2014, pages 98–113. IEEE, 2014.

[7] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and
P. Strub. Implementing TLS with verified cryptopgrahic
security. In Proceedings of IEEE S&P 2013, pages 445–469,
2013.

[8] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub,
and S. Z. Béguelin. Proving the TLS handshake secure (as it
is). In CRYPTO, pages 235–255, 2014.

[9] C. Brzuska, M. Fischlin, N. Smart, B. Warinschi, and
S. Williams. Less is more: Relaxed yet composable security
notions for key exchange. International Journal of Information
Security, 12(4):267–297, 2013.

[10] C. Brzuska and H. kon Jacobsen. A modular security analysis
of EAP and IEEE 802.11. In Proceedings of PKC, volume
10175 of LNCS, 2017.

[11] C. Brzuska, H. kon Jacobsen, and D. Stebila. Safely exporting
keys from secure channels: on the security of EAP-TLS and
TLS key exporters. In EuroCrypt, 2016.

[12] B. B. A. Delignat-Lavaud, N. Kobeissi, A. Pironti, and
Karthikeyan Bhargavan. FLEXTLS: A tool for testing TLS
implementations. In Proceedings of USENIX WOOT 2015,
best paper award, 2015.

[13] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A
cryptographic analysis of the TLS 1.3 handshake protocol
candidates. In ACM CCS, pages 1197–1210, 2015.

[14] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A
cryptographic analysis of the TLS 1.3 draft-10 full and
pre-shared key handshake protocol. IACR ePrint archive,
https://eprint.iacr.org/2016/081, 2016.

[15] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan,
E. Bursztein, M. Bailey, J. Halderman, and V. Paxson. The
security impact of HTTPS interception. In Proceedings of
NDSS, 2017.

[16] M. Fischlin and F. Günther. Replay attacks on zero round-
trip time: the case of the TLS 1.3 handshake candidates. In
Proceedings of Euro S& P, pages 60–75. IEEE, 2017.

[17] P. Fouque, G. Macario-Rat, C. Onete, and B. Richard. Achiev-
ing better privacy for the 3gpp aka protocol. In Proceedings
of PETS (PoPETS). De Gruyter, 2016.

[18] R. Grahm. Extracting the SuperFish certificate.
http://blog.erratasec.com/2015/02/extracting-superfish-
certificate.html, 2015.

[19] F. Günther, B. Hale, T. Jager, and S. Lauer. 0-RTT key
exchange with full forward secrecy. In Advances in cryptology
– EUROCRYPT, volume 10212 of LNCS, pages 519–548.
Springer, 2017.

[20] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security
of TLS-DHE in the standard model. In Advances in Cryptology
– CRYPTO, volume 7417 of LNCS, pages 273–293. Springer,
2012.

[21] T. Jager, J. Schwenk, and J. Somorovsky. On the security
of TLS 1.3 and QUIC against weaknesses in PKCS#1 v1.5
encryption. In Proceedings of ACM CCS 2015, 2015.

[22] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and
D. Venturi. (de-)constructing TLS. IACR ePrint archive,
report 020/2014, 2014.

[23] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and
D. Venturi. (De-)constructing TLS 1.3. In Proceedings of
Indocrypt, volume 9462 of LNCS, pages 85–102. Springer,
2015.

[24] H. kon Jacobsen. A modular security analysis of eap and ieee
802.11. Ph.D. thesis, 2017.

[25] H. Krawczyk, K. Paterson, and H. Wee. On the security of
the TLS protocol: A systematic analysis. In Proceedings of
CRYPTO 2013, volume 8042 of LNCS, pages 429–448, 2013.

[26] H. Krawczyk and H. Wee. The OPTLS protocol and tls 1.3.
In Proceedings of Euro S&P. IEEE, 2016.

[27] O. Levillain, B. Gourdin, and H. Debar. TLS record protocol:
Security analysis and defense-in-depth countermeasures. In
Proceedings of ACM ASIACCS 2015, pages 225–236. ACM,
2015.

[28] X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu. Multiple
handshakes security of TLS 1.3 candidates. In Proceedings
of S&P, pages 485–505. IEEE, 2016.

[29] A. T. Ltd. Comparing approaches for web and DNS infras-
tructure security. goo.gl/PBD2N6, 2016.

[30] D. Migault, K. Ma, Ericsson, R. Rich, Akamai, S. Mishra,
V. Communications, O. G. de Dios, and Telefonica. Lurk tls
dtls use cases. https://tools.ietf.org/html/draft-mglt-lurk-tls-
use-cases-02, 2016.

[31] P. Morrissey, N. Smart, and B. Warinschi. A modular security
analysis of the TLS handshake protocol. In Proceedings of
ASIACRYPT 2008, volume 5350 of LNCS, pages 55–73, 2008.

[32] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and
P. Steenkiste. And then there were more: Secure commu-
nication for more than two parties. In the 13th International
Conference on emerging Networking EXperiments and Tech-
nologies, pages 88–100, 2017.

[33] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn,
Diego R. López, K. Papagiannaki, Pablo Rodriguez Rodriguez,
and P. Steenkiste. Multi-Context TLS (mcTLS): Enabling
Secure In-Network Functionality in TLS. In Proceedings of
SIGCOMM 2015, pages 199–212. ACM, 2015.

[34] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala. TLS
proxies: Friend or foe. In Proceedings of IMC, pages 551–
557, 2016.

[35] T. Ormandy. Cloudflare reverse proxies are dumping
uninitialized memory. https://bugs.chromium.org/p/project-
zero/issues/detail?id=1139, 2015.

[36] K. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In
Advances in Cryptology — ASIACRYPT 2011, volume 7073
of LNCS, pages 372–389. Springer-Verlag, 2011.

[37] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-
Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,
M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In 43nd
ACM Symposium on Principles of Programming Languages,
POPL 2016, pages 256–270, 2016.

[38] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beur-
douche. Hacl*: A verified modern cryptographic library.
Appears in ACM CCS 2017. Cryptology ePrint Archive, Report
2017/536, 2017. http://eprint.iacr.org/2017/536.

APPENDIX A.
RELATED WORK

Two-party authenticated key-exchange protocols are an
old and well-studied primitive [2] and various notions of
channel security have been formalized and applied to TLS
1.2 [20], [25], [8], [22], [31], [36], [27] and 1.3 [13], [14],
[19], [16], [3], [28], [23], [26], [21]. However, as Bhargavan
et al. [4] showed in the context of TLS, and as Alt et al. [1]
and Fouque et al. [17] – in the context of mobile networks,
expanding two-party handshakes to include even a single,
dedicated middlebox can expose the obtained channel to
serious attacks. Our work reuses some parts of [4]’s security
model, specifically the elegant way in which multiparty
protocols can be viewed as compositions of 2-party AKE
schemes; however, the scope of our paper is fundamentally
different. The work of Bhargavan et al. centers around a
particular type of caching middlebox, with all-or-nothing
access rights to server contents. In this paper, our goal is
to provide finer-grained access-rights (as defined through
contexts) to both client- and server-side middleboxes.

Other approaches to delegated or proxied AKE protocols
exist. Composition-centric approaches, such as those of
Brzuska et al. [11], [10] and Jacobsen [24] capture the three-
party handshake usually deployed in WLANs (also called
the 4-way-handshake protocol). The main goals of that work
is to prove that a handshake consisting of three separate
executions of different AKE protocols, relying on different
credentials, can still yield a secure channel. This is different
from our case, for several reasons. The handshakes involved
in the EAP protocol do not interfere with each other and
can be treated independently, whereas in mcTLS and our
protocol, keys are simultaneously established and distributed
to multiple middleboxes. Furthermore, since our middleboxes
have finer-grained access rights, record layer security in our
setting is more subtle.

Our construction builds on the existing mcTLS proto-
col [33], which is a novel and a fundamentally different way
of thinking about proxying TLS connections. In parallel to
our work, a different variant of mcTLS, called middlebox TLS
(mbTLS) [32], has been recently proposed. Like our protocol,
mbTLS tries to keep more of the TLS handshake unchanged.

However, mbTLS appears more focused on the network-
architecture than on (formal) security guarantees. It also ded-
icates a significant part of its thrust to non-security properties
(e.g., deployability, backwards compatibility). Different to our
design, mbTLS looks at achieving certain security guarantees
between two hops via the use of attestation, and at integrating
the latter in the TLS handshake. But, unlike both mcTLS
and mbTLS, we show how our design can be concretely
instantiated with TLS 1.3, and we prove our proposal secure
formally.

APPENDIX B.
INSTANTIATING OUR DESIGN WITH TLS 1.3

Fig. 5 shows how to optimally instantiate our ACCE-AP-
secure design called Π, with TLS 1.38.

We presented our modular, ACCE-AP-secure design called
Π for 1 middlebox, in an abstract manner, using generic
authenticated key-exchange protocols. We will now show
how this translates into a more concrete design, when the
underlying authenticated key-exchange protocol used as the
building block is TLS 1.3; to illustrate the computations
therein, we will focus more on the server party S. I.e., one
server-instance will “liaise” directly with the middlebox (in
Figure 5, computations by this server-instance are written in
blue). Another server-instance will “liaise” with the client
(in Figure 5, computations by this server-instance are written
in black). Similarly, one client-instance will “liaise” directly
with the middlebox (written in red, on Figure 5), and one
will “liaise” with the server (written in black, on Figure 5).
For each instance, the normal computations for TLS1.3 take
place: a handshake transport key htk is derived (in two
stages: first, the TLS1.3 handshake secret hs is derived
using HKDF.extract(·) over the TLS1.3 early secret es
and using as secret input e.g. the value gyz

′
produced by

S’s blue instance; second, the HKDF.expand(·) is used
over hs, a finished key fk is derived (fk is derived using
HKDF.expand(·) of the base-key), and finally a transport
key tk and export keys ek are derived (as explained in
the TLS 1.3 draft). As per TLS1.3, after each handshake
transport key htk is derived, the TLS 1.3 handshake messages
thereafter are encrypted using htk, and the finished messages
are encrypted with fk. In Figure 5, we use the notation
AE(htk; ·) to denote the authentication encryption of a
message under the appropriate handshake traffic key. We
can see that the ACCE part of our design, instantiated herein
via TLS1.3 handshake, ends in each session –as expected–
with the Finished messages. Clearly, the transport keys tk on
Fig. 5 correspond to what in our generic ACCE-AP-secure
construction Π was denoted as the ck keys.

Then, the binding phase can start, whereby different
ti (with i ∈ {1, 2, 3}) are produced by particular nodes

8The newest draft of the TLS 1.3 handshake can be found at https:
//tools.ietf.org/html/draft-ietf-tls-tls13-21.

C MW (CertMW , skMW) S (CertS , skS)

Choose CHello,CHello′ Choose MWHello, MWHello′ Choose SHello, SHello′

Choose x, x′ Choose z, z′ Choose y, y′

(CHello, gx)
−−−−−−−−−−−−−−−−−−−→

(MWHello′, gz
′
,CertMW)

−−−−−−−−−−−−−−−−−−−→
(CHello′, gx

′
)

−−−−−−−−−−−−−−−−−−−→
(CHello′, gx

′
)

−−−−−−−−−−−−−−−−−−−→

Compute htk, fk
SHello, gy , SHello′, gy

′

←−−−−−−−−−−−−−−−−−−− Compute htk, fk, htk, fk

Verify CertS ,CVfS
AE(htk; CertS ,CVfS)

←−−−−−−−−−−−−−−−−−−− CVfS = SignskS
(SHash)

Verify FinS

AE(htk; FinS)
←−−−−−−−−−−−−−−−−−−− FinS = MAC(fk,SHash)

Compute CVfMW ,FinMW as S did
AE(htk; CReq)

←−−−−−−−−−−−−−−−−−−− Compute tk, ek, t2

AE(htk; CertS ,CVfS)
←−−−−−−−−−−−−−−−−−−− CVfS = SignskS

(SHash)
AE(htk; FinS)

←−−−−−−−−−−−−−−−−−−− FinS = MAC(fk,SHash)
Compute tk, ek, t3
Set HConfig = (C,CertMW ,CertS)
Set mcHS = (t2, t3,HConfig, aclHConfig)

AE(tk; mcHS)
←−−−−−−−−−−−−−−−−−−−

Compute htk, fk
MWHello, gz←−−−−−−−−−−−−−−−−−−− Compute CVfMW

Verify CertMW ,CVfMW

AE(htk; CertMW ,CVfMW)
←−−−−−−−−−−−−−−−−−−− Compute FinMW

Verify FinMW

AE(htk; FinMW)
←−−−−−−−−−−−−−−−−−−−

Compute htk, fk
SHello′, gy

′

←−−−−−−−−−−−−−−−−−−−

Verify CertS ,CVfS
AE(htk; CertS ,CVfS)

←−−−−−−−−−−−−−−−−−−−

Verify FinS

AE(htk; FinS)
←−−−−−−−−−−−−−−−−−−−

Compute FinC , FinC

Compute (tk, ek, t1), (tk, ek, t3)

Verify HConfig, aclHConfig, t3
AE(tk; mcHS)

←−−−−−−−−−−−−−−−−−−−
Set mcHC = (t1, t2, t3,HConfig, aclHConfig)

For all contexts i, get Ki (read and write)
AE(htk; FinC), AE(htk; FinC)
−−−−−−−−−−−−−−−−−−−→ Verify FinC

Compute KC
MW

AE(tk; HConfig,KC
MW)

−−−−−−−−−−−−−−−−−−−→ Store HConfig,KC
MW

AE(tk; mcHC)
−−−−−−−−−−−−−−−−−−−→

AE(htk; CertMW ,CVfMW)
−−−−−−−−−−−−−−−−−−−→ Verify CertMW ,CVfMW

AE(htk; FinMW)
−−−−−−−−−−−−−−−−−−−→ Verify FinMW

AE(tk; t1)
−−−−−−−−−−−−−−−−−−−→ Store t1

AE(tk; mcHC)
−−−−−−−−−−−−−−−−−−−→ Verify t1, t3,HConfig, aclHConfig

Check HConfig = HConfig
AE(tk; HConfig,KS

MW)
←−−−−−−−−−−−−−−−−−−− Compute all Ki and KS

MW

Check HConfig OK with MW
Check KC

MW = KS
MW

AE(tk; Accept)
←−−−−−−−−−−−−−−−−−−−

AE(tk; Accept)
−−−−−−−−−−−−−−−−−−−→

Record Layer

AE(tk; AE(Kread,Kwrite;m))
−−−−−−−−−−−−−−−−−−−→ Decrypt with tk

Filter to m̂
AE(tk; AE(KMW ; m̂))

−−−−−−−−−−−−−−−−−−−→ Decrypt with tk, (Kread,Kwrite)

Figure 5: Instantiating our ACCE-AP-secure construction Π, instantiated with TLS 1.3

of the communication and are sent across in a particular
order, encrypted with the transport key. To this end, we
write AE(tk; ·) for the authenticated encryption under a
relevant traffic key tk. Like in our generic ACCE-AP-secure
construction Π, we use a PRF keyed on the relevant ek and
applied over the hash of the session thus far to compute
the t, binding values, i.e. the binder t2 calculated by the
server for the session it has with the middlebox is done as
t2=PRF(ek;“e.sid”; SHash). Similarly, the server computes
a binder t3 for the session it has with the client. All the
configuration, the permissions and the binders t1 and t2
are placed by the server in mcHS , which is sent (via the
MW) encrypted with the transport key tk that S now shares

with the client. Similarly, after the handshake phase, the
client calculates binder t1 (for the session C has with the
middleware), and binder t3 (for the session C has with
the server). As it receives mcHS , the client checks the
configuration, permissions and t3 (as sent by S).

If no fault is encountered by C in the checks of the
configurations and binder t3 as received from S (via MW),
then the phase of the computation of the access keys can begin.
C will compute the access keys for the MW and send them
across to the MW, encrypted with the transport key tk that
C shares with MW , i.e. AE(tk; HConfig,KC

MW) (recall that
the color red simply denotes the session C – MW). C will
also package all the 3 binders along with the configuration

and permissions into mcHC which he sends to S , encrypted
with the transport key tk that C shares with S (via MW),
i.e. AE(tk; mcHC).

Upon receiving AE(tk; HConfig,KC
MW) from C , the

MW can store the config and permissions as sent by C and
retrieve the binders (notably t1) from KC

MW . To this end,
recall from the main manuscript that KC

MW is composed
of a series of keys Ki = PRF(ek3; ctxti;mcHC‖SHash)),
one for each context i. Importantly, having retrieved t1, the
middleware can send it encrypted with the transport key it
shares with the server to the server, i.e. AE(tk; t1) (recall
that the color blue simply denotes the session S – MW).

From AE(tk; mcHC) and AE(tk; t1), the server can store
t1 but also check that t1 and t3 as seen by C are the same
as produced by himself (in the case of t3) and received by
the middlebox (in the case of t1). From here on, if no fault
was found by S , then he will compute the access keys at
his end and send them to the middlebox, as done previously
by C , but –of course– encrypted with the key tk for the
S–MW session, i.e. AE(tk; HConfig,KS

MW) (recall that the
colour blue simply denotes the session S – MW). So, at this
point the middleware can confront the configs, permissions
and keys as received from C and from S, to check that they
are the same. From here, upon success, the configuration
acceptance messages can be sent and the application layer
exchanges can begin thereafter.

APPENDIX C.
AKE & ACCE SECURITY

The AKE and ACCE models. We now briefly review the
AKE and ACCE security notions, using the notations of
Brzuska et al. [11].
Parties and instances. Both models are defined in the
context of a set P of parties, which is formed of two disjoint
subset, the client set C , and the server set S . Parties are
associated with private keys sk and associated public keys pk,
which are certified by certifying authorities. Each protocol
session in which a party is involved describes an instance of
that party; πmi denotes the m-th instance of party Pi. Each
instance is associated with a set of attributes, the session-
specific ones intrinsically pertaining to the instances, whereas
the long-term ones being “inherited” by instances from their
“owning” parties.

For the ACCE model, the attributes are as follows: 1) The
private key πmi .sk := ski and public key πmi .pk := pki of
an instance πmi of party Pi; 2) The role πmi .ρ ∈ {init, resp}
of Pi, i.e., that of an initiator (the party that initiates the
execution of the protocol) or of a responder (the party
responding in that execution); 3) The session identifier
πmi .sid of an instance; 4) The partner identifier, πmi .pid is
either a party identifier Pj or, in unilateral authentication, it
can be a label “Client”denoting the client with whom the
party Pi believes to be communicating. 5) The acceptance-
flag πmi .α is 1 or 0 denoting that party respectively accepts

or rejects the partner’s authentication; to begin with and prior
to the end of the handshake, this attribute is set to ⊥; 6) The
revealed bit πmi .γ is 1 or 0 denoting that party has had its
session keys revealed or not; to begin with, 0 is assigned
to this attribute; 7) The channel-key, πmi .ck is set to a non-
null bitstring when πmi ends in an accepting state; prior to
the successful end of the session, this attribute is set to ⊥;
8) The left-or-right bit πmi .b, sampled at random when the
instance is generated and used in the key-indistinguishability
and channel-security games; 9) The transcript πmi .τ of the
instance, containing the suite of messages received and sent
by this instance, as well as all public information.

A crux notion of the ACCE models is that of partnering:
two instances πmi and πnj are partnered if their identifiers
πmi .sid and πnj .sid are equal and non-⊥.
ACCE/AKE games and adversarial queries. In the ACCE
model, a MiM adversary can interact with parties in concur-
rent or sequential session. His interaction is formally captured
via a series of oracles. I.e., the NewSession(Pi, ρ, pid) oracle-
query produces a new instance of Pi. Sending a message mes
to such an instance πmi is modelled via the MiM issuing a
Send(πmi ,mes) query. The Corrupt(Pi) queries encapsulate
the MiM learning party Pi’s secret key. Querying Reveal(πmi)
denotes the MiM finding out the channel keys for an accepting
instance πmi .

In the AKE models, the MiM has access to all the above
ACCE queries, as well as to the Test(πmi) oracle. On such
a query, the output is either the real channel keys πmi .ck
computed by the accepting instance πmi or some random
keys of the same length.

To define ACCE/AKE security on top of a MiM adversary
A having access to all the oracles above, we also need to
employ the notion of session freshness.
Session freshness. A session πmi is fresh with intended
partner Pj , if the following holds: 1) upon the last query of
the adversary A , the uncorrupted instance πmi has finished
its session in an accepting state, with πmi .pid = Pj ; 2) Pj is
uncorrupted; 3) no Reveal query was made for the πmi , π

n
j .

AKE Entity Authentication (EA). In the entity authentica-
tion game, the adversary queries the NewSession(Pi, ρ, pid),
Send(πmi ,mes), Reveal(πmi), and Corrupt(Pi) oracles and
its goal is to make one instance, πmi , end in an accepting
state, with partner ID Pj , which must be uncorrupted, such
that no other unique instance of Pj partnering πmi exists. The
adversary’s advantage in this game is its winning probability.
AKE Key-indistinguishability (KI). In the KI game,
A makes queries to the NewSession(Pi, ρ, pid),
Send(πmi ,mes), Reveal(πmi), and
Corrupt(Pi)) oracles and makes a single Test query for
a fresh instance πmi . It wins if it can guess this party’s
correctly randomly-chosen bit πmi .b. The adversary’s
advantage is the absolute difference between its winning
probability and 1

2 . The AKE security of a protocol is given
by the sum of the advantages an adversary has to break

either of the two properties, EA or KI.

ACCE security. In the ACCE model, the adversary is
slightly different to the AKE adversary: 1) it does not have
access to the Test oracle; 2) it has access to the oracles
Encrypt(πmi , l,M0,M1, H) and Decrypt(πmi , C,H), which
simulate the access to the secure channel established by party
instances. Intuitively, if the Decrypt oracle is queried on an
adversarially created ciphertext (without using the Encrypt
oracle), it will implicitly reveal the value of the bit b.

ACCE security is defined in terms of two games: the EA
game presented as in the ACCE model, and the following
game expressing the requirement of security for the estab-
lished channel.
ACCE Security of the Channel (SC). In this game,
the adversary A can use the NewSession(Pi, ρ, pid),
Send(πmi ,mes), Reveal(πmi), and Corrupt(Pi) oracles.
For a fresh instance πmi , A must output, the bit πmi .b of
that instance. The adversary’s advantage is the absolute
difference between its winning probability and 1

2 .

ACCE-security for TLS. It is known that TLS 1.2 in DHE
mode is (S)ACCE secure with unilateral authentication and
ACCE secure if the mutual authentication mode is used [20],
[25]. A recent compositional result by Brzuska et al. [11]
describes the construction of AKE-secure export keys from
an ACCE-secure key-exchange protocol such as TLS 1.2.
We note, however, that these results only prove the security
of fresh sessions, in which both partners are honest and
legitimate. In particular, the fact that the sessions keys are
computed only on the nonces (and not, e.g., over the entire
session transcript incl. the exchanged certificates) implies a
lack of uniqueness. In particular, a malicious, but legitimate
server can force two different sessions (one with a client
and another with an honest server) to share keys [6]. In
addition, moreover, the client may also be fooled, by a
malicious server, into thinking it is negotiating a handshake
with a different, honest server. In our case, such attacks are
particularly relevant, since we wish to compose handshakes, in
a scenario in which some of the participants may be malicious.
This weakness extends to the export-key construction of
Brzuska et al. [11].

For TLS 1.3 (up to and including draft 10), Dowling et
al. [14] have proved the (multi-stage) AKE security of the
keys output in TLS 1.3. Although the protocol has changed
since, it can still be inferred that the full mode of TLS 1.3
provides the same level of security for the obtained keys.
Note that by construction, TLS 1.3 offers the possibility
of computing export keys, and the proof of Dowling et
al. also postulates their indistinguishability from random. As
opposed to TLS 1.2, the TLS 1.3 handshake does provide the
uniqueness of session keys, even in the presence of malicious,
legitimate servers. This is because the TLS 1.3 key material
is always computed on the entire session hash, including the
authenticating information provided by the client and server.

On a different note, whereas in TLS 1.2 the server can
simply choose DHE parameters as it wishes, in TLS 1.3 it is
the client that chooses the DHE groups from amongst a list
of possible groups that are considered secure. Although this
does not impact our result, it does mean than our multicontext
protocol is secure when instantiated with any of those groups.
Should we wish to instantiate it with TLS 1.2, the security
of the multicontext handshake would depend on which DHE
parameters the server chooses.

