
Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS

Antoine Delignat-Lavaud, KarthikeyanBhargavan,
Alfredo Pironti (Prosecco, InriaParis)

CédricFournet(Microsoft Research)

Pierre-Yves Strub(IMDEA Software Institute)

1



User Authentication over TLS

ÅApplications rely on weak authentication
ÅWeb: passwords, session cookies, single sign-on tokens

ÅCookie confidentiality requires secure flag

ÅCookie integrity almostnever guaranteed

ÅBearer tokens are vulnerable to MITM attacks

ÅCountermeasures bind tokens to the TLS handshake
ÅTLS-OBC [Dietz et al., UsenixSecurity 2012], Channel ID

ÅTLS client authentication after renegotiation

ÅEAP-TTLS (wireless networks, VPN…)

ÅSCRAM-PLUS (XMPP, mail servers…)

ÅExtended Protection for Windows, SAML V2.0, …
2



Challenges

ÅBlurred line between application and transport layers

ÅDoes TLS provide the right guarantees?

ÅDo applications use their TLS libraries correctly?

3



The API Problem

4

ÅWhatapplications want: socket replacement
Åconnect(), listen(), accept(), read(), write(), close()

ÅWhatwe canprove: [miTLSproject, S&P’13]



API Example: SSL_read

Å Return value 0: Read operation was not successful. 
The reason may either be:
Å a clean shutdown due to a close_notifyalert sent by the 

peer (in which case the SSL_RECEIVED_SHUTDOWN flag 
in the SSL shutdown state is set) 

Å or the peer simply shut down the underlying transport

5

OpenSSLManual



Attack: Cookie Cutter

ÅNetwork attacker can truncate HTTPS contents by 
closing underlying TCP connection

ÅSecurity is an opt-in feature of cookies
ÅSet-Cookie: SID=BEEFCAFE; domain=a.com; secure

ÅWhat if we truncated the secure flag?
ÅHeader becomes syntactically invalid

Å“Conservative in what you send, liberal in what you accept”

ÅExploit fragmentation + plaintext injection for precise 
truncation point control

6



Attack: Cookie Cutter

7

http://docs.google.com/A

https://accounts.google.com/login?goto=http://docs.google.com/A

POST /login HTTP/1.1 […] user=alice&password=123456&goto=…

HTTP/1.1 302 Redirect
Location: http://doc.google.com/A

Set-Cookie: SID=beefcafe1337; domain=.google.com

; secure; httpOnly;
Connection: Keep-Alive

You are beingredirectedto doc.google.com …

Alice Google

Fragment 2

Fragment 1



Attack: Cookie Cutter

8

http://docs.google.com/A http://docs.google.com/A?XXXXX

https://accounts.google.com/login?goto=http://docs.google.com/A?XXXXX

POST /login HTTP/1.1 […] user=alice&password=123456&goto=…

HTTP/1.1 302 Redirect
Location: http://doc.google.com/A?XXXXX

Set-Cookie: SID=beefcafe1337; domain=.google.com

; secure; httpOnly;
Connection: Keep-Alive

You are beingredirectedto doc.google.com …

Alice Mallory Google

Fragment 2

Fragment 1



Cookie Cutter: Impact and Mitigation

ÅNetwork attacker can get victim’s browser to process 
malicious truncated headers
ÅSteal secure cookies

ÅDisable Strict-Transport-Security(SSL stripping)

ÅFixed in Chromium (NSS library, CVE-2013-2853), 
Android Browser (OpenSSL), and Safari (Secure 
Transport, APPLE-SA-2014-04-22-1)
ÅWas the browser or the TLS library to blame?

9



API Example: Renegotiation

Å“If peer requests a renegotiation, it will be performed 
transparently during the SSL_read() operation.”

Å“As at any time a re-negotiation is possible, a call to 
SSL_write() can also cause read operations!”

10

OpenSSLManual



ÅKey exchange produces pre-master secret (PMS)

ÅMS = MS-PRF(PMS, Client Nonce, Server Nonce)

Background: TLS Handshake

11

Client Server



Background: 2009 Renegotiation Attack

ÅRenegotiation
ÅA handshake is tunneled within an established TLS channel

ÅThe newly negotiated parameters are used thereafter

ÅProblem
ÅNew (inner) handshake not bound to outer tunnel 

ÅIs the peer starting a new session or renegotiating? 

ÅDeployed solution
ÅRenegotiation indication: mandatory extension

ÅSRI = verify_dataof the latest handshake on connection

ÅNew handshake authenticate the SRI of the previous one

ÅFresh connections, resumption start with empty SRI

12



Attack: 3Shake Step 1

ÅA malicious server M can synchronize the key of a TLS 
session with a client C on another server S
ÅRSA: M re-encrypts C’s PMS under S’ public key
ÅDHE: M sends degenerate group parameters

ÅNeither PMS nor MS is unique to a TLS session
13



Attack: 3Shake Step 2

ÅC can resume session with M on S without any tampering. 
Hash of message log (verify_data) is equal on both sides

ÅThe tls-uniquebinding (first verify_dataof last handshake 
on the current conection) is not unique after resumption!

14



Attack: 3Shake Step 3

15

ÅM canforward authenticated
renegotiationfrom C to S

ÅS associatesthe full session 
with C’s certificate

ÅImplementationdecisions
ÅHow doesC handlethe 

certificatechange?

ÅHow doesS handledata 
injectedby M before
renegotiation?



TLS Session Headache

16

M S

C S

C M

M S

2009 Renegotiation Attack

Triple Handshake Attack



3Shake: Impact and Mitigations

ÅConditions
ÅC is willing to authenticate on M with his certificate

ÅC ignores the server certificate change during renegotiation

ÅS concatenates the data before and after renegotiation

ÅImpact
ÅM can inject malicious data authenticated as C

17



3Shake: Mitigations

ÅShort-term Mitigations
ÅC can block server certificate changes
ÅChomium(CVE-2013-6628)
ÅSafari (APPLE-SA-2014-04-22-2)
ÅInternet Explorer (pending)

ÅS may refuse to accept data before client authentication

ÅLong-term: fixing the standards
ÅWe propose MS’ = MS-PRF’(PMS, tls-session-hash)
Åtls-session-hash= hash of the handshakemessages that

createdthe session up to client keyexchange
ÅUnder considerationby the IETF (draft-bhargavan-tls-

session-hash-01)

18



Why 3Shake Wasn’t Discovered Earlier

ÅBhargavanet al., IEEE S&P’13
Implementing TLS with Verified Cryptographic Security
ÅAttack falls outside the scope of their authentication 

guarantees for resumption

ÅGiesenet al., CCS’13
On the Security of TLS Renegotiation
ÅDoesn’t model resumption

ÅKrawczyket al., CRYPTO’13. On the Security of the TLS 
Protocol: A Systematic Analysis
ÅDoesn’t model resumption or renegotiation

19



Variants and Related Attacks

20

See paper for details.



Towards Secure TLS Applications

ÅIt is too difficult to use current TLS APIs securely
ÅCertificate validation

ÅSession and cache management

ÅIdentity and session transitions

ÅShutdown mode

ÅWe must verify applications under the precise 
guarantees offered by the TLS API

ÅCritical for features outside the channel abstraction
ÅSNI, ALPN, Channel ID, Channel Bindings, renegotiation, 
client authentication, Keying Material Exporters…

21



A Verified HTTPS Client

ÅWe introduce miHTTPS, a verified HTTPS client built 
on top of the miTLSlibrary

ÅmiHTTPSsupports cookies, TLS client authentication, 
resumption and renegotiation
ÅCaptures our attacks

ÅUsing F7 along with Z3, we extend the refinements of 
the miTLSAPI into HTTP-level security goals:
ÅRequest integrity

ÅResponse integrity

ÅResponse tracking using fresh random cookies
22



Conclusions

ÅWe found that applications fail to use the basic and 
advanced features of TLS implementations securely

ÅWe found a new logical flaw in the resumption 
feature of the TLS protocol

ÅThe TLS library is not the right unit of verification for 
today’s complex application protocols
ÅWe advocate verifying thin application protocol libraries 

similar to miHTTPS
23



Questions?

24

https://www.mitls.org


