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Abstract—Compound authentication protocols, such as EAP
in IKEv2 or SASL over TLS, bind application-level authentication
to a transport-level authenticated channel in order to obtain
strong composite authentication under weak trust assumptions.
Despite their wide deployment, these protocols remain poorly
understood, leading to several credential forwarding man-in-the-
middle attacks. We present formal models for several compound
authentication protocols, and analyze them against a rich threat
model that includes compromised certificates, leaked session keys,
and Diffie-Hellman small subgroup confinement. Our analysis
uncovers new compound authentication attacks on TLS rene-
gotiation, SSH re-exchange, IKEv2 resumption, and a number
of other channel binding proposals. We propose new channel
bindings and formally evaluate their effectiveness using the
automated symbolic cryptographic protocol verifier, ProVerif. In
particular, we present the first formal models that can reconstruct
the recently published triple handshake attacks on TLS, and the
first automated analysis of its proposed countermeasure.

I. COMPOUND AUTHENTICATION

Mutual authentication of clients and servers is an important
security goal of any distributed system architecture. To this
end, cryptographic protocols such as Transport Layer Security
(TLS), Secure Shell (SSH), and Internet Protocol Security
(IPsec) offer several mutual authentication modes based on
well-studied cryptographic constructions called Authenticated
Key Exchanges (AKEs).

However, a common deployment scenario for these proto-
cols, as depicted in Figure 1, does not use mutual authenti-
cation. Instead the transport-level protocol authenticates only
the server and establishes a unilaterally-authenticated secure
channel where the client is anonymous. The client (or user) is
authenticated by a subsequent application-level authentication
protocol that is tunneled within the transport channel. The
composition of these two protocols aims to provide compound
authentication: a guarantee that the same two participants
engaged in both protocols, and hence both agree upon the
identities of each other (and other session parameters).

Examples of such compound authentication protocols are
widespread, and we list some that use TLS as the transport-
level protocol. TLS servers almost universally use only server
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Fig. 1. A compound authentication protocol combining a server-
authentication transport protocol with application-level user authentication.

authentication, relying on various application-level user au-
thentication protocols within the TLS channel: HTTPS web-
sites use cookies or HTTP authentication, wireless networks
use the Extended Authentication Protocol (EAP), mail and chat
servers uses the Simple Authentication and Security Layer
(SASL), windows servers use the Generic Security Service
Application Program Interface (GSSAPI). Even within the TLS
protocol, clients and servers can re-authenticate each other
via a second key exchange (called a renegotiation) tunneled
within the first. For example, a server-authenticated TLS key
exchange may be followed by a mutually-authenticated key
exchange. The second key exchange takes the place of the
application-level protocol in Figure 1.

Similar layered compound authentication protocols have
been built using SSH and IKEv2. More generally, compound
authentication protocols may compose any sequence of au-
thentication and key (re-)exchange protocols, in each of which
one or both participants is anonymous. In this paper, we
mainly consider protocols that use TLS, SSH, and IKEv2
to create transport channels, followed by some authentication
protocol based either on strong public-key cryptography, or on
challenge-response password verification.

Man-in-the-middle attacks on compound authentication:
Even if two protocols are independently secure, their com-
position may fail to protect against the man-in-the-middle
(MitM) attack depicted in Figure 2. Suppose a client C
sets up a transport channel with a malicious server M and
then authenticates the user u at M . Further assume that the
credential credu that C uses for u (e.g. an X.509 public-key
certificate) is also accepted by an honest server S. Then, M
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Fig. 2. Man-in-the-Middle (MitM) credential forwarding attack.

can set up a separate transport channel to S and forward all
messages of the user-authentication protocol back and forth
between C and S. At the end of the protocol, M has managed
to authenticate as u on S, even though it does not have access
to u’s private keys.

This generic credential forwarding MitM attack was first
noted by Asokan et. al. [1] in the context of EAP authentication
in various wireless network authentication protocols, and the
attack motivated their statement of the compound authentica-
tion problem [2]. The attack applies to any scenario where the
same user credential may be used with two different servers,
one of which may be malicious. It also applies when the user
authentication protocol may be used both within and outside
a transport protocol. Another instance of the attack is the TLS
renegotiation vulnerability discovered independently by Ray
and Dispensa [3] and by Rex [4]. Other similar MitM attacks
on HTTP authentication over TLS are noted in [5], [6].

Channel binding countermeasures: In response to these
various attacks, new protocol countermeasures have been pro-
posed and widely implemented. The key idea behind these
countermeasures is depicted in Figure 3. The user authentica-
tion protocol additionally authenticates a channel binding value
derived from the transport-level session. Since the MitM M is
managing two different sessions, one with C and one with S,
the two channels should have different channel bindings (cb,
cb′). In the user authentication protocol, C binds the user’s
credential credu to its channel cb with M . When S receives
the credential, it expects it to be bound to its channel cb′ with
M , and refuses the credential otherwise. Hence, the channel
binding prevents credential forwarding.

The difference between various channel-binding counter-
measures is on what the channel binding value cb should be,
and how it should be bound to the user authentication protocol.
Various EAP methods use a technique called cryptographic
binding which effectively uses the outer session key sk as a
channel binding and uses a key derived from it to complete the
user authentication protocol [7], [8], [9]. Various application
protocols such as SASL rely on channel bindings as specified
in [10]. Three channel bindings for TLS are defined in [11].
To fix the TLS renegotiation attack, all TLS implementations
implement a mandatory protocol extension [12] that binds each
key exchange to (a hash of) the transcript of the previous
exchange, effectively a channel binding that is similar to the
definition of tls-unique in [11]. Extended Protection for
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Fig. 3. Channel binding to prevent MitM attacks.

Authentication on Windows servers binds user authentication
to TLS to prevent credential forwarding [13]. Other counter-
measures bind the user authentication protocol to the client or
server certificates in the underlying TLS session [14], [5], [6].

Channel synchronization attacks: Despite the widespread
implementation of channel binding countermeasures in com-
pound authentication protocols, few of these have been for-
mally evaluated. Indeed, even the original MitM attacks were
discovered by hand, rather than with the help of formal tools.
In the absence of systematic analyses against a variety of threat
models, how can we be sure that these countermeasures work?

Of the various channel bindings, TLS renegotiation has
received the most formal attention. For example, a proof of its
compound authentication for a sequence of TLS-DHE hand-
shakes appears in [15]. However, the recent triple handshake
attacks [16] showed that this countermeasure fails if TLS
session resumption is also enabled. More generally, the triple
handshake attacks showed that a number of commonly-used
TLS channel bindings are ineffective, and demonstrated new
MitM user impersonation attacks on a variety of TLS-based
compound authentication protocols.

The problem is that channel binding countermeasures only
work if the attacker cannot synchronize the channel bindings
on the two channels. In Figure 3, if M can ensure that cb
= cb′, then the countermeasure no longer works. Indeed, the
triple handshake attacks show how various TLS channel bind-
ings (such as the renegotiation countermeasure [12]) can be
synchronized across different channels that use the TLS-RSA
or TLS-DHE key exchanges followed by session resumption.

In this paper, we show that such channel synchronization
attacks apply also to channel bindings proposed for other
key exchanges such as IKEv2, Secure Remote Password
(SRP), and Elliptic Curve Diffie-Hellman (ECDHE) using
Curve25519. In each of these cases, we show that the pro-
posed channel bindings for these protocols are inadequate
for compound authentication. We show a variation of the
triple handshake attack on IKEv2, using IKEv2 resumption
and IKEv2 re-authentication. We also show a triple exchange
vulnerability in SSH key re-exchange where a client and server
can be confused about the sequence of exchanges on the
connection. In all these cases, the attacks apply to existing
implementations of these protocols.
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A formal analysis of channel bindings: To systematically
evaluate various channel binding proposals and discover new
attacks automatically, we develop a series of protocol models
in the applied pi calculus [17] and analyze them with the
protocol analyzer ProVerif [18].

We formalize the security goals of compound authentica-
tion and evaluate various compound authentication protocols
and their channel bindings against powerful attacker models.
Our models are able to find many of the new attacks presented
in this paper as well as to rediscover older attacks. In particular,
our models are the first to automatically reconstruct the triple
handshake attacks and other previous MitM attacks on TLS.

We propose a new security requirement for key exchange
protocols that enables them to be used for compound authen-
tication. They must provide agreement on a channel binding
value that is contributive, that is, it cannot be determined solely
by one of the two participants. We propose new contributive
channel bindings for IKEv2, SSH, and SRP. We analyze our
SSH bindings as well as the TLS session hash countermeasure
for the triple handshake attacks [16]. We show that within
our threat model and under the limitations of our symbolic
cryptographic abstractions, these contributive channel bindings
prevent channel synchronization attacks.

Outline: Section II presents general notations and for-
mal definitions for the protocol model used in the paper as
well as detailed examples of several compound authentication
protocols. Section III presents old and new channel synchro-
nization attacks on some compound authentication protocols.
Section IV proposes new contributive channel bindings to
prevent these attacks. Section V describes our ProVerif models
that encode the formal definitions of Section II; it then shows
how we can discover some of the attacks of Section III and
analyze the countermeasures of Section IV. Section VI briefly
discusses related work. Section VII concludes.

II. FORMAL PROTOCOL MODEL

We consider a family of two-party authentication protocols.
Each protocol session is executed by a pair of principals
(denoted by p generically, and a, b in a pair) over an untrusted
network. Each principal has access to a set of public creden-
tials (written c1, c2, . . .), and each credential has an associated
secret (written s1, s2, . . .) that may be used to create a proof
of possession for the credential. Credentials and their secrets
may be shared by two or more principals. A credential may
be compromised, in which case its secret is revealed to the
adversary. The adversary is treated as a distinguished principal
with access to a set of compromised credentials.

At run-time, the adversary may trigger any number of
instances of each authentication protocol. Each instance has
a protocol role: it is either a initiator or a responder and this
role is played by a principal. By the end of the protocol, each
instance assigns the following variables:

• p: the principal executing this instance

• l: a fresh locally unique identifier for the instance at
the principal p

• role: initiator or responder

• params: public session parameters, with the following
distinguished fields, any of which may potentially be
left unassigned (⊥)
◦ ci: the credential of the initiator
◦ cr: the credential of the responder
◦ sid : a global session identifier
◦ cb: a channel binding value computed for the

current protocol instance
◦ cbin: a channel binding value for the underly-

ing (previous, outer) protocol instance (if any)

• secrets: session-specific secrets, with the following
distinguished field, potentially unassigned (⊥):
◦ sk : an authentication (MAC or authenticated

encryption) key created during the protocol

• complete: a flag (∈ {0, 1}) that indicates whether the
instance has completed its role in the protocol or not.

The principal name (p) and local identifier (l) are abstract
values that do not appear in the protocol; we use them to state
security properties about our protocol models. The protocol
itself may assign one or both credentials (ci, cr), and may
generate a global session identifier (sid ) for use at both
initiator and responder. It may generate a channel binding value
(cb), and if the protocol is being run within an authenticated
channel, it may also exchange a channel binding value (cbin)
for the outer channel.

When the initiator and responder credentials are both
unassigned (ci = cr = ⊥), the protocol instance is said to be
anonymous; if only one of them is unassigned, the instance is
called unilateral; otherwise the instance is said to be mutually
authenticated. If the instance key is assigned (sk 6= ⊥), then
the instance is said to be key generating.

A. Threat Model

We consider a standard symbolic attacker model in the
style of Dolev and Yao [19], as is commonly used in the
formal analysis of cryptographic protocols, using tools like
ProVerif [18]. The attacker controls the network and hence is
able to read, modify, and inject any unencrypted message.

In addition, the attacker has access to a set of compromised
credentials, marked by an event Compromise(c), which may
be used both by the attacker and by honest principals (who
may not know that their credential has been compromised).
In any given protocol, we say that the initiator or responder
credential is honest if it is defined (6= ⊥) and has not been
compromised. The attacker may also selectively compromise
short-term session secrets, such as the session key sk ; we mark
the theft of a secret s by an event Leaked(s).

Conversely, we assume that these compromise events are
the only way the attacker can obtain any long-term or short-
term secret; he cannot, for example, guess the value of a secret,
even if it is a short password. Moreover, following Dolev and
Yao, we assume that the underlying cryptography is perfect:
we model each cryptographic primitive as an abstract symbolic
function with strong properties. For example hash functions are
irreversible (one-way) whereas encrypted values can only be
reversed (decrypted) with the correct key.
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For protocols that use a Diffie-Hellman (DH) key exchange,
the attacker may try to either use a bad DH group (e.g. one
with small subgroups) or may send an invalid public key (one
that does not belong to the right group.) This attack vector is
usually not considered in typical protocol analyses, but as we
will see in Section III-B, it is practical for many protocols and
often leads to serious attacks on compound authentication. In
Section V, we show how to encode this more general Diffie-
Hellman threat model in ProVerif. We treat Elliptic Curve
Diffie Hellman (ECDH) protocols similarly.

Credential compromise (Compromise(c)) is a standard
feature of formal protocol analyses but, to practitioners, it may
seem unrealistic to protect against. The attacks in this paper
do not rely on this capability. However, it is an important
threat to consider when evaluating countermeasures, since it
can commonly occur in in real-world scenarios. Consider the
example of TLS server certificates. The attacker can always
obtain certificates under his own name. The challenge is to
obtain a certificate that may be used to impersonate an honest
server. One way is to steal a server’s private key. In practice,
private key theft is difficult to achieve, however there are
several simpler forms of compromise that achieve the same
goal. For example, the client may fail to validate server
certificates correctly (e.g. see [20]), or the user may click-
through certificate warnings [21]. In these cases, the attacker
may be able to use his own certificate to impersonate an honest
server. Alternatively, the attacker may be able to exploit a
badly-configured certification authority to obtain a mis-issued
certificate under the honest server’s name [6], [22], [23].

B. Security Goals

For each individual authentication protocol, the goal is
agreement on (some subset of) both the public protocol pa-
rameters and the session secrets. While the precise definition
of agreement depends on the protocol being considered, it can
be informally stated as follows:

Definition 1 (Agreement): If a principal a completes pro-
tocol instance l, and if the peer’s credential in l is honest, and
if the session secrets of l have not been leaked, then there
exists a principal b with a protocol instance l′ in the dual role
that agrees with l on the contents of params and any shared
session secrets (most importantly sk ).

In particular, l and l′ must typically agree on each other’s
credentials, the session identifier sid and channel binding
cb, and any negotiated cryptographic parameters. We do not
explicitly state the confidentiality goal for secrets , but many
derived authentication properties such as compund authentica-
tion implicitly depend on the generated sk being confidential.

When composing a set of protocols, besides getting individ-
ual agreement on each protocol’s parameters, we also require
joint agreement on all the protocols. Informally:

Definition 2 (Compound Authentication): If a principal a
completes a compound authentication protocol consisting of
protocol instances {l1, . . . , ln}, such that some instance li has
an honest peer credential and the session secrets of li have
not been leaked, then there exists a principal b with protocol
instances {l′1, . . . , l′n} such that each l′j has the dual role to lj
and agrees with lj on paramsj and sk j .

In other words, a compound authentication protocol com-
poses a set of individual authentication protocols in a way
that guarantees that the same peer principal participated in all
the protocols. The strength of the definition is that it requires
this guarantee even if all but one of the peer credentials
were compromised (or undefined). In particular, compound
authentication protects against a form of key compromise
impersonation: even if a server’s transport-level credential is
compromised, the attacker cannot impersonate an honest user
at the application level.

Other weaker variations of this definition may be more
appropriate for a particular compound authentication protocol.
For example, the definition of security for TLS renegotia-
tion [15] states that if the peer credential in the last proto-
col instance ln is honest then there must be agreement on
all previous protocol instances. Conversely, as we shall see,
compound authentication for SSH re-exchange requires that
the session key sk1 of the first protocol instance l1 is never
leaked. Furthermore, some channel bindings guarantee joint
agreement only on certain elements of paramsi, such as the
peer credentials, not on their full contents.

C. Compound Authentication Protocol Examples

We now explain how the composition of current popu-
lar protocols fits within our formal compound authentication
model by describing three concrete examples, and discussing
other variations. The first two examples serve as the basis for
the ProVerif models introduced in Section V.

1) TLS-RSA+SCRAM: Our first example uses the TLS
protocol to establish a transport channel and then runs a SASL
user authentication protocol called Salted Challenge Response
Authentication Mechanism (SCRAM) [24]. SCRAM uses the
tls-unique channel binding as defined in [11]. Figure 4
depicts the protocol flow.

TLS supports different key exchange mechanisms; we refer
to the RSA encryption based key exchange as TLS-RSA. In
TLS-RSA, the server credential (cr) is an X.509 certificate
containing an RSA public key used for encryption. The client
can optionally authenticate via an X.509 certificate for signing;
here we assume that it remains anonymous (ci = ⊥).

In Figure 4, the client and server first exchange their local
identifiers, (nonces cr, sr) and the server sets a session id sid.
At this stage, protocol version and cipher suite (nego) are also
negotiated. The server then sends its certificate certS which is
verified by the client. The client follows by sampling a random
pre-master secret pms which is encrypted under pkS and sent
to the server. The client and server then compute a shared
master secret ms = kdf TLS

1 (pms, cr, sr) and a session key
sk = kdf TLS

2 (ms, cr, sr). After the client and server finished
messages are exchanged and their content checked by each
peer, both instances complete and create a new TLS session
with the following assignments:

params = (ci = ⊥, cr = certs, cr, sr,nego)
secrets = (pms,ms, sk)
sr = privkey(certs)
cb = H(log1)

According to the tls-unique specification, a channel bind-
ing cb is set to a hash of the transcript of all messages before
the ClientCCS message.
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Fig. 4. The TLS-RSA+SCRAM compound authentication protocol.

The SCRAM protocol then runs on top of the TLS connec-
tion, performing password-based user authentication. Before
the protocol runs, as part of the user registration process at S,
S generates a random salt saltu and an iteration count i and
asks u to derive two keys KC and KS from its password pwdu.
The server key KS and a hash of the client key (H(KC)) are
stored at S, but the raw password or client key are not.

In the first message of SCRAM, the client sends its
username u and a fresh nonceC ; the server responds with
its own fresh nonceS , the iteration count i, and the salt saltu
from which the client key KC can be recomputed. The client
then sends a message that proves its possession of KC and
binds the key to the username, nonces, and the TLS channel
binding. The server terminates the protocol sending a similar
message, showing it knows the server key KS . By the end of
the protocol, we have agreement on:

params ′ = (ci = u, cr = ⊥,nonceC ,nonceS , cbin = H(log1))
si = pwdu, sr = (H(KC),KS)

The compound authentication goal for the composite TLS-
RSA+SCRAM protocol can be written in two directions:

• If the server credential certS is honest, and if
a client principal a completes TLS-RSA+SCRAM,
then there exists a server principal b running TLS-
RSA+SCRAM, which has the same TLS params and
sk and the same SCRAM params ′ as a.

• If the user’s credential u is honest (pwdu is se-
cret), and if a server principal b completes TLS-
RSA+SCRAM, then there is a client principal a run-
ning TLS-RSA+SCRAM, which has the same TLS
params and sk and the same SCRAM params ′ as b.

Notably, the first goal holds even if the user’s password
(and therefore, the keys KC , KS) is compromised, and the
second goal holds even if the server’s certificate certS is

compromised. That is, user credential forwarding and server
key compromise impersonation are both prevented.

Other TLS key exchange variants: There are various other
key exchanges supported by TLS which may be used in place
of TLS-RSA in the above protocol. In all these protocols,
the computation of cb, ms , and sk remains the same. The
main differences are the computation of pms and the choice
of client and server credentials. The definition of compound
authentication remains the same (adapted to the appropriate
notion of credential compromise).

In TLS-DHE, the server and optional client credentials
are both X.509 certificates used for signing. The pms is
obtained using a Diffie-Hellman agreement between the client
and server, over a prime order group whose parameters (prime
π, generator g) are chosen and signed by the server.

params = ([ci = certc], cr = certs, cr, sr,nego, cb,
π, g, gx mod π, gy mod π)

secretsi = (x, pms = gxy mod π,ms, sk)
secretsr = (y, pms = gxy mod π,ms, sk)
si = privkey(certc), sr = privkey(certs)

In TLS-ECDHE, the exchange is similar to TLS-DHE,
except that the Diffie-Hellman group is represented by a named
elliptic curve n and public keys are represented by points on
the curve. TLS supports several elliptic curves, and more are
being considered for standardization.

TLS-SRP uses the Secure Remote Password (SRP) proto-
col to authenticate the user with a password while protecting
the exchange from offline dictionary attacks. The protocol
relies on a fixed Diffie-Hellman group (π, g). The client
credential refers to a username (u) and salted password (xu)
and the server credential refers to a password verifier value
(vu = gxu mod π). The pms is calculated using the SRP
protocol.

params = (ci = u, cr = ⊥, cr, sr,nego, cb,
π, g, A = ga mod π,B = (gb + kvu)mod π,
h = hash(A||B))

secretsi = (a, pms = gb(a+hxu) mod π,ms, sk)
secretsr = (b, pms = gb(a+hxu) mod π,ms, sk)
si = xu, sr = vu

2) SSH User Authentication: A session of the SSH protocol
consists of a key exchange protocol composed with a user
authentication protocol, as depicted in Figure 5.

In the SSH key exchange protocol, the initiating principal
is a user and the responding principal is a host that the user
wishes to log on to. The two principals first exchange nonces
ni, nr (called cookies in SSH), Diffie-Hellman public keys
gxmodπ, gymodπ in some group (π, g), and other negotiation
parameters nego. The host is authenticated with a public key
cr = pkS that is assumed to be known to the client. In
the key exchange, the user is unauthenticated (ci = ⊥). At
the end of the protocol, each instance produces an exchange
hash H . Over a single connection, the SSH key exchange
protocol can be run several times, each time generating a
fresh exchange hash. The exchange hash of the first key
exchange happening over a connection is called the session
id (sid ), and it remains constant over the life of a connection.
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Fig. 5. The SSH user authentication protocol.

The authenticated encryption key for the current instance is
computed as sk = kdf SSH(gxy mod π,H, sid).

params = (ci = ⊥, cr = pkS , ni, nr,nego,
π, g, gx mod π, gy mod π,H, sid)

secretsi = (x, gxy mod π,H, sid , sk)
secretsr = (y, gxy mod π,H, sid , sk)
si = ⊥, sr = skS

cb = sid = H

The SSH user authentication protocol is layered above the
key exchange protocol. Figure 5 depicts the certificate-based
user authentication protocol, where the client signs a block
containing the username u and the sid with a private key sku

assigned to the user (whose public key pku is known to the
server). No new secrets are generated.

params ′ = (ci = pku, cr = ⊥, sid)
si = sku, sr = ⊥

The compound authentication goal for SSH user authenti-
cation can be written out very similarly to TLS-RSA+SCRAM.
The user and host obtain a mutual authentication guarantee: if
the peer’s credential is honest, then both principals agree on
the SSH key exchange params as well as the user credential.

3) IKEv2+EAP: IKEv2 offers several authentication modes
for the initiator and responder. They may authenticate each
other with pre-shared keys, or with certificates, or the respon-
der may use a certificate while the initiator uses an Exten-
sible Authentication Protocol (EAP). In all these cases, the
two instances first engage in the IKE_SA_INIT anonymous
Diffie-Hellman key exchange protocol and then perform a the
IKE_AUTH protocol within the established channel. Figure 6
depicts the EAP variant.

In the first two messages, the initiator and responder
exchange nonces (ni, nr), Diffie-Hellman parameters ((π, g))

User u

Initiator

Server R

Responder

IKE SA INIT1(π, g, g
x mod π,NI)

IKE SA INIT2(g
y mod π,NR)

IKEv2 SA Params:
sk = kdf(gxy mod π,NI , NR),

cbI = AUTHI = (gx mod π,NI , NR,mac(sk, I))

IKEv2 SA Params:
sk = kdf(gxy mod π,NI , NR)

cbR = AUTHR = (f,NI , NR,mac(sk,R))

IKE AUTH1(I)

IKE AUTH2(certR, sign(skR, cbR))

EAP-Authenticate(u)

. . .

EAP session key: msk EAP session key: msk

IKE AUTH3(mac(msk , cbI))

IKE AUTH4(mac(msk , cbR))

Authenticated IKEv2 SA:
u → R

sk,NI , NR

Authenticated IKEv2 SA:
u → R

sk,NI , NR

Fig. 6. The IKEv2+EAP compound authentication protocol.

and public keys (gx mod π, gy mod π), along with other
protocol specific negotiation parameters (nego). The Diffie-
Hellman shared secret is used to protect the subsequent mutual
authentication protocol and create an authenticated encryption
key sk = kdf IKEv2(gxy mod π, ni, nr).

params = (ci = ⊥, cr = certR, ni, nr,nego,
π, g, gx mod π, gy mod π,AUTH i,AUTH r)

AUTH I = (gx mod π, ni, nr,mac(gxy mod π, I))
AUTHR = (gy mod π, ni, nr,mac(gxy mod π,R))
secretsi = (x, gxy mod π, sk), secretsr = (y, gxy mod π, sk)
si = ⊥, sr = skR

IKEv2 does not explicitly define a global session identifier,
but its authentication protocol relies on two values AUTH I

and AUTHR, as defined above, that are used as channel
bindings for the subsequent IKE_AUTH protocol.

In the EAP case depicted in Figure 6, in the first two mes-
sages of IKE_AUTH, the initiator sends its identity I but not its
certificate, whereas the responder sends it certificate certR and
a signature over AUTHR with its private key skR. Then the
initiator and responder begin a sequence of EAP request and
response messages [7] in order to authenticate the user u (and
potentially re-authenticate the server R). EAP embeds many
authentication methods, ranging from weak password-based
protocols like MSChapv2 and fully-fledged authenticated key-
exchange protocols like TLS and IKEv2. At the end of the
EAP exchange, the responder R has authenticated u and has
generated a new EAP master session key msk .

To complete the IKE_AUTH protocol, the initiator and
responder exchange MACs over AUTH I and AUTHR re-
spectively, keyed with msk .

params = (ci = u, cr = ⊥, cbin = (AUTH i,AUTH r))
secretsi = (sk = msk), secretsr = (sk = msk)
si = credu, sr = ⊥

The final two messages cryptographically bind the IKE_AUTH
authentication protocol to the IKE_SA_INIT key exchange
to obtain the usual compound authentication guarantee.

4) Other Bindings: EAP, tls-server-end-point: The
three previously described compound authentication protocols
are only a few of the many possible combinations between
transport protocols and application-level authentication.
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Many protocols compose TLS with EAP methods [7], [8],
[9] and in response to previous man-in-the-middle attacks [1]
on such protocols, many EAP methods have been extended
with a form of channel binding called cryptographic bind-
ing [2]. The idea is to use the master secret and random
values of the TLS protocol (ms, cr, sr) as a channel binding
and to derive a key by mixing it with the master session
key msk and nonces nonceC ,nonceS generated by the EAP
method. The resulting compound MAC key (cmk ) is then used
to cryptographically bind the EAP method to the TLS channel,
by using it to create two MACs B1_MAC and B2_MAC that
are exchanged in the final messages of the EAP exchange:

cmk = prf EAP (ms, cr, sr,msk ,nonceC ,nonceS)
B1 MAC = mac(cmk ,nonceS)
B2 MAC = mac(cmk ,nonceC)

Some channel bindings have more modest
compound authentication goals. For example, the
tls-server-end-point channel binding [11] only
aims to ensure that the application level protocol instances
agree on the transport-level server certificate. In this case,
the channel binding cb for TLS consists of the hash of the
TLS server certificate (H(certS)). This binding is used, for
example, when binding SAML assertions to the underlying
TLS channel [25], so that a SAML assertion generated for
use at one server may not be used at another, unless the two
servers share the server certificate.

Re-keying and resumption: Many of the authentication
protocols described above also offer a re-keying protocol, by
which the session key sk generated by the protocol can be re-
freshed without the need for full re-authentication of the client
and the server. Re-keying is mainly useful on connections
where a lot of data is exchanged, so that the compromise of a
session key is of limited benefit to the attacker. For example,
SSH recommends that keys be refreshed every hour, or for
every gigabyte of data.

Re-keying protocols may also be used to perform fast
session resumption. If an initiator and responder already have
a channel between them with a session key sk , they may reuse
the session key to start a new channel without the need to re-
peat the full key exchange. Such session resumption protocols
are included within TLS, and are available as extensions to
IKEv2 [26], SSH [27], and EAP [28]. Session resumption can
have a major impact on the performance of a client or a server
since it skips many of the expensive public-key operations
of a full key exchange. For example, the vast majority of
TLS connections between web browsers and major websites
like Google perform session resumptions rather than full key
exchanges.

A full key exchange followed by re-keying or resumption
can be treated as a compound authentication protocol, except
that the re-keying protocol does not change the client or server
credentials. Instead, it simply performs a key confirmation
of the previous session key sk and generates a new session
key sk ′. For example, in TLS resumption, the new key is
computed from the old master secret plus the new random
nonces generated by the client and the server:

params ′ = (ci = cr = ⊥, cr′, sr′, sid ,nego)
secrets ′ = sk ′ = kdf TLS

2 (ms, cr′, sr′)

The compound authentication goal for re-keying is that if
the session secrets and peer credentials in the original session
are not compromised, then the two principals agree upon both
the old and new session parameters (params, params ′) and
session keys (sk , sk ′).

Re-exchange and re-authentication: In addition to re-
keying, many key exchange protocols also allow the initia-
tor and responder to perform a second key-exchange to re-
authenticate each other. In TLS, this is called renegotiation
while in SSH it is called re-exchange. For IKEv2, there is a
proposed extension that allows re-authentication in the style of
TLS [29].

The TLS renegotiation is a full key exchange and both
the client and server may authenticate themselves using cre-
dentials that differ from the previous exchange. This feature
was famously subject to a man-in-the-middle attack [3], [4]
and in response to this attack all TLS libraries implement a
mandatory channel binding countermeasure [12] that binds the
renegotiation key exchange to the the transcript of the previous
handshake. More precisely, each TLS handshake generates a
channel binding of the form:

cb = (verifydata(log1,ms), verifydata(log2,ms))

The subsequent handshake agrees on this channel binding
value, and by including it in the key exchange, the chain of
channel bindings on a connection guarantees agreement on the
full sequence of protocol assignments on a connection [15].

The SSH re-exchange is also a full server-authenticated key
exchange where the server’s host key and other parameters may
be different from the previous exchange. Unlike TLS, however,
SSH uses the sid , that is the hash H of the first exchange on
the connection, as a channel binding for all subsequent key
exchanges on the connection. In particular, during the second
SSH key exchange, a new set of parameters and secrets are
generated, but the session id does not change. Hence, the new
session key is computed as

sk = kdf SSH(gxy mod π,H ′, sid)

where H ′ is the hash computed during the new exchange the
sid is still the hash computed in the first exchange.

The proposed re-authentication protocol for IKEv2 [29]
is inspired by TLS renegotiation and treats the AUTH I and
AUTHR payloads as channel bindings for re-authentication. It
runs a new IKE_SA_INIT protocol and within this protocol
and a new IKE_AUTH protocol that binds the initiator and
responder credentials to the AUTH I and AUTHR payloads
of the previous IKEv2 session.

III. CHANNEL SYNCHRONIZATION ATTACKS

In the previous section, we described a number of com-
pound authentication protocols that implement the channel
binding pattern of Figure 3 in order to prevent man-in-the-
middle attacks like the one in Figure 2. Now we will evaluate
a number of these channel binding mechanisms to see if they
succeed in preventing such attacks.

The channel binding countermeasure relies on the channel
bindings for independent protocol sessions being different.
Hence, we observe that if the man-in-the-middle attacker
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manages to synchronize the channel bindings on its proto-
col sessions to two different principals, it can re-enable the
credential forwarding attack. We call such attacks channel
synchronization attacks. Informally, a sequence of protocols
between two principals is subject to a channel synchronization
attack if we can find two sequences of protocol instances where
the channel binding generated by the last protocol instances
are the same, and at least one of the credentials is honest, but
the parameters in the two sequences do not match. It may be
easier to understand such attacks by example, and we shall
give several examples below.

A channel synchronization attack typically leads to an at-
tack on compound authentication after the next authentication
protocol instance: agreement on the previous channel binding
no longer guarantees agreement on all previous protocol in-
stances.

A. Triple Handshake Attacks on TLS

The triple handshake attacks of [16] show that a number
of channel bindings of TLS fail to prevent man-in-the-middle
attacks. For the full details of these attacks we refer the reader
to [16] and to our ProVerif models. Here, we summarize their
impact and identify their general principles.

Firstly, they show that the master secrets ms in TLS-
RSA and TLS-DHE can be synchronized across two different
TLS connections. This means that the EAP cryptographic
binding (based on (ms, cr, sr)) does not provide compound
authentication and still leads to man-in-the-middle attacks
on protocols like PEAP, EAP-TTLS, and EAP-FAST. The
fact that a key transport protocol like TLS-RSA allows key
synchronization was well-known (see e.g. the famous attack on
the Needham Schroeder public-key protocol [30]). However,
the impact of key synchronization on compound authentication
was identified only in [16]. The key synchronization attack
on TLS-DHE is more surprising since Diffie-Hellman key ex-
changes are expected to be contributive: both parties contribute
to the established key. The attack relies on the client being
willing to accept an arbitrary group from the server.

Secondly, they show that the handshake transcripts (log1,
log2) can be synchronized across two different TLS con-
nections that use session resumption after different but
synchronized initial TLS-RSA or TLS-DHE key exchange.
This means that the tls-unique channel binding used
by SCRAM does not guarantee compound authentication
after session resumption. That is, if we run SCRAM af-
ter resuming a TLS-RSA session on a new connection, a
credential forwarding attack on SCRAM becomes possible.
Moreover, the channel binding used by TLS renegotiation
(verifydata(log1,ms), verifydata(log2,ms)) is also synchro-
nized and hence TLS renegotiation after session resumption
is also subject to a credential forwarding attack. Since the
transcripts of the two connections have been synchronized,
it means that countermeasures such as [6], [14], [5] are also
broken after session resumption.

In the rest of this section, we generalize such synchro-
nization attacks and evaluate whether they apply to other key
exchanges in TLS, IKEv2 and SSH.

B. Key Synchronization via Small Subgroup Confinement

Diffie-Hellman key exchange protocols are based on prime-
order groups, typically written (π, q, g) where q is a prime
less than π and g generates a q-order subgroup of [1..p −
1]. All participants are expected to choose private keys in the
range [1..q − 1]. However, such protocols are known to be
vulnerable to various attacks when the group has other small
subgroups (see e.g. [31]). Notably, we show how to exploit
small subgroups for key synchronization.

For all π, there is at least the subgroup of size 1 consisting
of the element 0 and the subgroup of size 2 consisting of
{1, p − 1}. So, if one of the participants chooses a Diffie-
Hellman public key of 0, no matter what exponent y the
other participant chooses, the resulting shared secret will be
0x mod π = 0. Similarly, by choosing 1 or p − 1 as a public
key, one of the participants of the key exchange can force the
shared secret to be a fixed value, no matter what the other
participant chose. This is called a small subgroup confinement
attack: rather than honestly choosing a public key in the q-
order subgroup, a malicious participant can force its peer to
compute in a smaller subgroup where the resulting shared
secrets are predictable (or at least guessable from a small set
of values).

We advocate that, in order to eradicate such attacks, both
participants should validate the groups and public keys they
receive, say using the rules in [32]. The tests ensure that the
public key is in the q-order subgroup and is not equal to 0 or
1. Still many protocol implementations do not perform these
checks: either because the protocol itself does not provide
enough information (e.g. a TLS server provides the generator
g and the prime π, but not the order q); or presumably for
efficiency; or because it is commonly believed that small
subgroup confinement attacks only matter when keys are
reused [33]. We show that these attacks can also help break
compound authentication via key synchronization.

1) Key Synchronization in IKEv2: IKEv2 can be used
with a number of well-known MODP groups including the
groups 22-24 that have many small subgroups [34]. However,
the specification for IKEv2 public-key validation [33] only
requires implementations to check for 0, 1 and p − 1, but
does not require it to check that the public key is in the q-
order subgroup, as long as it does not reuse private exponents.
Indeed, all of the open source IKEv2 implementations we have
seen that implement these groups skip the q-order check. This
leads to a key synchronization attack.

Suppose an initiator I connects to a malicious responder
M , which then in turn connects to an honest responder
R. During the IKE_SA_INIT key exchange, M forwards
messages between I and R but it uses its own Diffie-Hellman
public key. M chooses as its public key a generator g′ of
a small k-order subgroup and sends it to both I and R.
Consequently the resulting Diffie-Hellman shared secrets on
both connections is in the k-order subgroup and there is a 1/k
chance of both secrets being the same.

Since M has also synchronized the nonces NI and NR,
the session key sk on both connections also has a 1/k chance
of being the same. So any compound authentication protocol
that relies on a channel binding derived from (sk , NI , NR) (as
proposed in [35]) is vulnerable to a man-in-the-middle attack.
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2) Key Synchronization in ECDHE with Curve25519: The
named elliptic curves used with TLS and other protcools
typically do not have any small subgroups, but there are
many new proposals and prototype implementations that use
Curve25519 [36], because its implementations are faster and
because it does not require any public key validation (all
32-byte strings are said to be valid public keys). However,
Curve25519 has a subgroup of size 8, and hence there are 12
points1 that fall in small subgroups. Yet, implementations of
the curve typically allow these values, trusting the webpage
that “these exclusions are unnecessary for Diffie-Hellman”.

Hence, if a client C and server S both allow Curve25519
public keys in the 8-order subgroup, a man-in-the-middle M
can mount a key-synchronization attack to obtain the same key
on two connections with probability at least 1/8. Consequently,
TLS-ECDHE with Curve25519 also becomes vulnerable to the
triple handshake attacks.

3) Key Synchronization in SRP: The SRP protocol uses a
Sophie-Germain prime π that has only the usual small sub-
group values 0, 1, p− 1. The initiator and responder exchange
two values A = ga mod π and B = (gb + kvu)mod π where
vu = gxumodπ is the password verifier. The SRP specification
says that A and B must not be 0 but does not otherwise require
any public key validation. Indeed the OpenSSL implementation
of TLS-SRP does not perform any additional checks on A and
B. This leads to a key synchronization attack.

Suppose a malicious server M registers its own username
and password at S and suppose it chooses xu = 0; that is, the
verifier vM = 1. Now, suppose the client C connects to M
using SRP. M chooses B = 1 + kvu (i.e. b = 0) so that the
resulting session key sk = gb(a+hxu) = 1. Meanwhile, suppose
M separately connects to S using its own credential xM , and
chooses A = 1 (a = 0). Again, on this connection the resulting
session key sk = gb(a+hxu) = 1. The two connections have
different client and server credentials, but the resulting session
key is the same. Consequently, using TLS-SRP in the initial
handshake also leads to the triple handshake attacks.

C. Transcript Synchronization via Session Resumption

A number of compound authentication protocols use the
transcript of the previous (outer) authentication protocol as
a channel binding. For example, both TLS renegotiation and
the tls-unique binding use a channel binding derived
from the TLS handshake log. IKEv2 authentication and re-
authentication both use AUTH payloads derived from the
preceding IKE_SA_INIT transcript as a channel binding. In
contrast, SSH only uses the transcript of the first exchange on
the connection, not the most recent exchange.

Protocols that rely on transcript for channel bindings must
be wary of session resumption, since the transcript of a
resumption (or re-keying) handshake is necessarily abbreviated
and does not authenticate all the session parameters. For
example, the transcripts of both TLS and IKEv2 resumption
only guarantee agreement on the previous session keys sk , but
not on other parameters. Consequently, like TLS resumption,
IKEv2 resumption leads to a transcript synchronization attack.

1these points are listed at http://cr.yp.to/ecdh.html

Suppose a man-in-the-middle M has managed to imple-
ment a key synchronization attack across two connections as
described above, one from C to M and the other from M to S.
At the end of this key exchange, the values (sk , NI , NR) on
the two connections are the same. Now suppose C resumes
its session with M and M resumes its session with S.
M can simply forward the IKE_SA_INIT and IKE_AUTH
messages of session resumption between C and S since the
original session keys are the same. M will not know the
new session keys, but at the end of the resumption exchange,
the two authentication payloads (channel bindings) AUTH I

and AUTHR are the same (even though the identities and
credentials used in the original key exchange were different.)
Consequently, if this channel binding is used in a subsequent
user authentication protocol or by IKEv2 re-authentication, it
will lead to a man-in-the-middle credential forwarding attack.

In other words, we have reconstructed a variant of the TLS
triple handshake attack on the composition of IKEv2, IKEv2
session resumption and IKEv2 re-authentication. The impact
of this attack is not as strong as the TLS attack since both
IKEv2 re-authentication and IKEv2 channel bindings are not
yet widely implemented or used.

D. Breaking Compound Authentication for SSH Re-Exchange

The SSH re-exchange protocol uses the session id sid as
a channel binding, where sid is derived from the transcript
of the first key exchange on the connection. Consequently,
each exchange on an SSH connection is bound to the first
exchange; however, these subsequent exchanges are not bound
to each other. This is in contrast to the TLS renegotiation
countermeasure [12] which chains together the whole sequence
of key exchanges on a given connection.

We show that a sequence of three SSH exchanges may
break compound authentication, if the attacker succeeds in
compromising the session secrets of the first exchange.

The protocol flow that exhibits the vulnerability is depicted
in Figure 7. Suppose a client C executes an SSH key exchange
and user authentication with a server S. Now suppose a
malicious server M compromises the session key sk and
session id sid (by exploiting a bug at the client or at the server,
for example.) Suppose C initiates a second key exchange.
Since M knows the session key, it can intercept this key
exchange and return its own host key (SSH allows a change
of host keys during re-exchange). At the end of the second
key exchange, the session keys and other parameters at C
and at S are now different, but the session id remains the
same. Now, suppose C begins a third key exchange; M can
re-encrypt all messages sent by C with the previous session
key sk still used by S and vice versa. At the end of this third
exchange, C and S have the same keys, session parameters,
and session id, and they have not detected that there was
a completely different exchange injected at C in between.
Since the number of protocol instances at C and S differ,
our compound authentication goal is violated.

Since the attack requires session key compromise, which
is difficult to mount in practice, we consider it largely a
theoretical vulnerability. However, it serves to illustrate the
difference between the channel bindings used by TLS rene-
gotiation and SSH re-exchange. Furthermore, it clarifies the
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User

Client C

Attacker

Server A

Server

Server S

1st SSH key exchange

. . .

New SSH session (sid):
pku → pkS

sid = H, sk = kdf(K,H, sid), cb = sid

New SSH session (sid):
pku → pkS

sid = H, sk = kdf(K,H, sid), cb = sid

Compromises:
sk, sid

2nd SSH key exchange

. . .

Rekeyed SSH Session (sid):
pku → pkA

sk′ = kdf(K ′, H ′, sid)

Knows:
sk, sid , sk′,K ′, H ′

3rd SSH key exchange (Re-encrypted under sk′)

. . .. . .

Rekeyed SSH Session (sid):
pku → pkS

sk′′ = kdf(K ′′, H ′′, sid)

Rekeyed SSH Session (sid):
pku → pkS

sk′′ = kdf(K ′′, H ′′, sid)

Fig. 7. Triple Exchange Vulnerability in SSH

dangers of session key compromise in SSH. SSH session
keys are supposed to be refreshed every hour, presumably
since there is some danger that they may be compromised.
The use of session keys embedded in session tickets for
SSH session resumption increases the chances of them being
compromised. The above attack shows that if an SSH session
key is compromised when it is still in use, the attacker can not
only tamper with the current session for an hour, he can also
use any number of SSH re-exchanges to create new keys and
keep the session alive at both the client and the server. Then,
at any point, the attacker may step out of the middle and the
client and server will continue to talk to each other without
detecting any wrongdoing.

E. Summary of Attacks

In this section we recalled the triple handshake attacks on
TLS and then described a series of new attacks:

• TLS-ECDHE with Curve25519 is vulnerable to key
synchronization, and hence to the triple handshake
attacks;

• TLS-SRP is vulnerable to key synchronization, and
hence to the triple handshake attacks;

• IKEv2 with groups 22-24 is vulnerable to key syn-
chronization, and hence its unique channel bind-
ing [35] is vulnerable to a man-in-the-middle attack;

• IKEv2 session resumption is vulnerable to transcript
synchronization, and hence IKEv2 resumption fol-
lowed by IKEv2 re-authentication is vulnerable to a
variant of the triple handshake attacks;

• SSH re-exchange is vulnerable to a triple-exchange
man-in-the-middle vulnerability, if the attacker can
compromise session keys.

IV. CONTRIBUTIVE CHANNEL BINDINGS

To prevent the key synchronization attacks in the previous
section, an implementation-level countermeasure would be to

fully validate all public keys as specified, for example, in [32]
and to forbid unknown Diffie-Hellman groups and elliptic
curves. Other attacks on IKEv2 and SSH can be prevented
by forbidding the change of the peer’s credential during key
exchange. While such countermeasures may be sufficient, they
do not address the core weaknesses of the channel bindings
used in these protocols.

We propose a new requirement for the channel bindings
generated by composite authentication protocols. We advocate
that the channel binding must be contributive, that is, it must
contain contributions from each participant of the protocol. In
particular, if a compound authentication protocol consists on n
protocol instances {l1, . . . , ln}, the channel binding of ln must
be bound to the parameters and session secrets of all n in-
stances {params1, sk1, . . . , paramsn, skn}, so that agreement
on the channel binding guarantees compound authentication
for the composite protocol.

A. TLS Session Hash and Extended Master Secret

In response to the triple handshake attacks, [16] proposed a
new protocol extension called the tls-session-hash [37]
that fixes tls-unique and the TLS renegotiation channel
binding, so that they guarantee compound authentication even
when session resumption is enabled.

The idea of the session hash is inspired by the SSH session
hash: for each TLS handshake, the session hash contains a hash
of the transcript and is used within the key derivation function
that generates the master secret:

h = H(log1)

ms = kdf TLS
1 (pms, h)

Consequently, the master secret is bound to all the session
parameters negotiated in the handshake and key synchro-
nization attacks is no longer possible. Furthermore, since
session resumption authenticates the ms , it also implicitly
authenticates all the session parameters. We formally evaluate
the effectiveness of this countermeasure in the next section.

B. SSH Cumulative Session Hash

The SSH session id sid is a good channel binding for SSH
user authentication and for SSH resumption, but it fails to
provide strong compound authentication guarantees for SSH
re-exchange. To address the triple-exchange vulnerability of
the previous section, we propose a new contributive channel
binding, inspired by the TLS renegotiation countermeasure. In
the terminology of [10], we aim to define a unique channel
binding for SSH channels that identifies the innermost SSH
exchange.

The SSH cumulative session hash is computed as the
incremental hash of the sequence of exchange hashes. Each
SSH exchange includes the hash of the previous exchange
Hi−1 in the hash for the current exchange Hi. The initial
exchange treats the previous exchange hash (H0) as empty.
Now, when generating the session key, we no longer need to
mix in the session id, since the cumulative session hash is
bound to all previous exchanges, including the first one.

H0 = ε
Hi = hash(log ||pkS ||e||f ||K||Hi−1)

sk i = kdf SSH(K,Hi)
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In the next section, we show that this cumulative hash prevents
the triple-exchange vulnerability.

C. IKEv2 Extended Session Keys

IKEv2 key derivation suffers from the same weakness as
TLS, leading to similar key synchronization attacks. While the
AUTH payloads provide a good channel binding for EAP
authentication, they are not suitable for IKEv2 resumption
or re-authentication. Consequently, we propose an extended
session key derivation for the IKE_SA_INIT protocol that
derives the session key from the Diffie-Hellman shared secret,
the nonces, and the public keys:

sk = kdf IKEv2(gxy mod π, gx mod π, gy mod π,NI , NR)

Much like the TLS session hash, this modification ensures
that the IKEv2 session key is context bound to all the
IKE_SA_INIT parameters, and hence prevents key synchro-
nization attacks.

A less intrusive alternative, specifically to prevent transcript
synchronization in IKEv2 resumption, would be to authenticate
the AUTH payloads of the original SA within the resumption
IKE_AUTH protocol.

V. FORMAL ANALYSIS WITH PROVERIF

A. Presentation of the Model

Cryptographic library: Asymmetric-key encryption and
digital signature primitives are modeled according to standard
symbolic Dolev-Yao patterns. Namely, asymmetric encryption
is defined by the reduction adec(s,aenc(pk(s),p)) = p where
aenc(k,p) and adec(s,c) represent the asymmetric encryption
and decryption operations respectively, s is a private key,
pk(s) its public part and p the plaintext. Hence, a plaintext
encrypted with public key pk(s) can be recovered only if the
private key s is available. Signatures can be checked via the
reduction check(pk(s),d,sign(s,d)) = true where sign(s,d) is the
digital signature primitive, taking a private key s and the data
to sign d. This model excludes collisions between asymmetric
encryption and signature, even if the same key-pair is used for
both operations.

In all the analyzed protocols, symmetric-key encryption
and authentication schemes are composed to obtain some
form of authenticated encryption. In our ProVerif model,
we abstract over these compositions and model a perfect
authenticated encryption scheme via the following reduction
rule ad(k, ae(k,p)) = p where ae(k,p) and ad(k,c) are the au-
thenticated encryption and decryption functions respectively, k
is a symmetric key and p is the plaintext.

One way functions such as hashes and key derivation func-
tions are modeled in the usual way, by defining constructors
such as hash(x) or kdf(x) without associated reduction rules.

According to our threat model of Section II, we define
DH key agreement in the presence of bad groups and keys.
To do so within ProVerif support of equational theories, we
start by defining a standard core DH model that only handles
good keys and one static good group. The following equation
captures the core DH property

E(E(G,x),y) = E(E(G,y),x)

where E(e,x) is the DH modular exponentiation function, G
is the static good DH group, and x,y are honestly generated
keys. In certain circumstances, it is know that this equation
may cause the ProVerif resolution algorithm to diverge. While
our models where not affected by divergence issues, one
could resort to more elaborate ProVerif encodings for DH
exponentiation [38], or to different tools with specialized DH
support (e.g. [39]).

This core DH model is then wrapped by a DHExp(elt,x)
function which handles bad groups and keys, as well as multi-
plexing of several good groups over the static core group. The
behavior of DHExp(elt,x) is defined by the following reductions

1: DHExp(goodDHElt(goodDHGroup(id),x),y) =
goodDHElt(goodDHGroup(id),E(x,y))

2: DHExp(goodDHElt(badDHGroup,x),y) = badDHElt(badDHGroup)
3: DHExp(badDHElt(gr),y) = badDHElt(gr).

The reduction at line 1 handles the case where good groups
and elements are used. In this case, the good group has
an identifier id, which is used to multiplex over the static
core group G. The reductions at lines 2 and 3 model that,
when a DH exponentiation is performed on a bad group or
element, a constant bad element for that group is obtained.
The adversary knows the term badDHGroup and can always
apply the badDHElt(gr) function: this over-approximates small
subgroup confinement, in that the small subgroup has always
size 1, and hence the attacker can guess the negotiated bad
DH value with probability 1.

Overall process structure: Given a two-party authentica-
tion protocol, we model one process per principal, initiator() and
responder() respectively. If one principal is going to authenticate
to the other, its process takes a credential and its associated
secret as input parameters. A top level process sets up cre-
dentials and runs infinite instances of each principal process.
For example, the top-level process for a key-exchange protocol
where the responder authenticates to the anonymous initiator
(as it happens in the transport layer of the SSH protocol for
example), is

process
(∗ Responder credential generation ∗)
new rsec:privkey; let rpub = pk(rsec) in out(net,rpub);
(!initiator() | !responder(rpub,rsec))

When a process successfully ends a protocol instance, it
stores the local identifier l, the authenticated credentials ci, cr,
the instance parameters params and the secret sk into a table,
which acts as a session database. Initiators and responders use
disjoint tables, named idb and rdb respectively.

For protocols that allow re-keying, session renegotiation or
resumption, the initiator process has the following structure:

let initiator() =
... (∗ Model of main key−exchange ∗)
insert idb(l,ci,cr,params,sk)
| get idb(l,ci,cr,params,sk);
... (∗ Model of alternate key−exchange ∗)
insert idb(l’,ci’,cr’,params’,sk’)
| ... (∗ Model of other alternate key−exchange ∗)
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That is, a process non-deterministically either runs the standard
key exchange, or picks a session from the database and starts
an alternate key exchange method. Responder processes are
modeled after the same pattern as well.

In our model, a principal process accepts any credential
from the other principal, as long as proof of possession of
its associated secret can be provided. Hence, a session can be
successfully completed either with an honest principal, or with
the attacker who is using a compromised credential.

Honest principals only use honestly generated credentials
and associated secrets; the attacker can generate any number of
compromised credentials and use them in protocol instances.
Hence, our model captures static credential compromise, but
does not fully handle dynamic credential or session secret
compromise, where some honest credentials or session secret
are later leaked to the attacker, or where some compromised
secrets are used by honest principals. Nevertheless, we can
handle specific dynamic compromise scenarios by adapting the
model of honest principals to intentionally leak credentials or
session secrets after a certain step of a protocol instance.

Security properties against such an attacker are expressed
and proved by defining suitable queries and auxiliary pro-
cesses. Details are given in the following for each analyzed
security property.

B. Channel Synchronization

1) Definition: Channel synchronization over a parameter
or secret d occurs when the following proposition is violated:

Every time an initiator and responder complete a pro-
tocol instance with parameter or secret d, credentials
within these instances must remain the same.

We encode such proposition in ProVerif by defining an
auxiliary oracle() process, that tries to get from both the
initiator and responder tables an entry having the same pa-
rameter or secret d, but different credentials. If this suc-
ceeds, the oracle() process emits an event(Session sync()). The
query event(Session sync()) checks for the reachability of this
event; hence, if ProVerif can prove that event(Session sync())
is unreachable, it means there is no channel synchronization
attack for d on the analyzed protocol.

2) In TLS Initial Handshake: We begin by modeling
TLS-RSA. As described in [16], synchronizing the master
secret ms on TLS-RSA is not complicated: since ms =
kdf (pms, nc, ns), it is enough to synchronize the values used
for its computation in order to mount the attack. For example,
the attacker can pose as the server in one protocol instance
(offering compromised credentials to the client), and as an
anonymous client to a honest authenticated server in another
instance. Such an attacker can synchronize further session
parameters, such as the TLS session id.

When modeling TLS-DHE, we can prove the absence of
master secret synchronization attacks if both client and server
check that good DH groups and keys are being used. However,
as discussed in [16], TLS allows the server to pick arbitrary
DH groups, whose validity may be hard to check for the client,
hence opening to master secret synchronization attacks.

3) In Re-keying SSH Key Exchange: By comparison,
we analyze encryption key synchronization attacks for the
SSH key exchange protocol: ProVerif can prove that the
event(Sesion sync()) is unreachable even in the presence of bad
DH groups and keys, both for the first key exchange and
for re-keying. Indeed, SSH encryption keys are computed as
sk = kdf (K,H, sid), where K is the potentially bad DH
shared secret, but crucially H is the exchange hash capturing
unique information about the ongoing instance, notably includ-
ing local unique identifiers and the value of the credential being
authenticated.

C. Agreement at Initiator

Definition 1 can be modeled in ProVerif by a correspon-
dence assertion of the form:

query inj−event InitiatorEnd(pk(s),params,sk) =>
inj−event ResponderBegin(pk(s),params,sk) || attacker(s)

where s is the secret associated with credential pk(s), and
params and sk are the instance parameters and shared secret
respectively. Here, we capture credential compromise by al-
lowing the initiator to complete instances with the attacker,
when the latter controls the credential secret.

1) TLS with Renegotiation and Resumption: We can prove
agreement at initiator for all the three TLS modes, namely
initial handshakes, renegotiation and resumption, even in the
presence of authenticated encryption key dynamic compro-
mise. We stress that this kind of agreement holds even if we
do not model the renegotiation information (RI) extension [12]
introduced after the man-in-the-middle attacks against TLS
renegotiation [3]. Indeed, it is the case that TLS provides
agreement on all the current instance parameters even without
RI and an underlying encryption layer. What is broken by the
attack in [3] is a form of compound authentication that implies
agreement on the current and all previous TLS instances that
happened over the same connection. This is discussed in detail
below.

2) SSH with Re-keying: According to our definition, we try
to prove agreement on the shared secret sk and the parameters
H,K, sid, pkS . We model the SSH key exchange protocol,
including re-keying. At the end of each key exchange we can
only prove agreement on K,H and pkS ; but, crucially, right
after the key exchange protocol has ended, agreement on sid
and sk fails, and ProVerif hints at the following attack.

First, the attacker connects to a honest server b, obtaining
sk,K,H, sid = H . Second, an honest client tries to connect
to b; the attacker tunnels this key exchange through its current
connection. At the end of the key exchange, client and server
agree on the most recent exchange hash H ′ and DH shared
secret K ′, but they have different session ids and encryption
keys, namely sid′ = H ′, k′ = kdf (K ′, H ′, sid′) on the client
and k′′ = kdf (K ′, H ′, sid) on the server.

As noted in [40, §6.3], the SSH key exchange protocol
prescribes explicit confirmation only for K and H , via server
digital signature. Confirmation of the encryption keys, and
hence of sid, is implicitly done when receiving the first
encrypted application message from the other party, in case
decryption succeeds. Accordingly, if we add an explicit key
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confirmation message encrypted under the new keys at the end
of the SSH key exchange, we can successfully prove agreement
on encryption keys and all parameters.

We anticipate that SSH required agreement on sid consti-
tutes a form of compound authentication involving the first key
exchange on the connection and the current one.

D. Agreement at Responder and Compound Authentication

Agreement at responder is defined symmetrically to agree-
ment at initiator, as:

query inj−event ResponderEnd(pk(s),params,sk) =>
inj−event InitiatorBegin(pk(s),params,sk) || attacker(s).

Following definition 2, one may express compound authen-
tication as:

query inj−event Compound ResponderEnd(pk(s),
params 1,sk 1, ..., params n,sk n) =>

inj−event Compound InitiatorBegin(pk(s),
params 1,sk 1, ..., params n,sk n) || attacker(s).

However, the number n of protocol instances is unbound, and
hence this query cannot be practically written. We overcome
this problem by defining a function log(params,pl) that takes
the current instance parameters params and a previous log pl,
and returns a new log that is the concatenation of the current
parameters and the previous log. A constant emptyLog is defined
to bootstrap. Each initiator and receiver session table is updated
to additionally store the log; the first key exchange stores
log(params,emptyLog) into its table, while any subsequent key
exchange picks a previous log pl from the table, and at the end
of a successful run stored the new log(params’,pl).

In this model, compound authentication is expressed as:

query inj−event Compound ResponderEnd(pk(s),p,sk,log) =>
inj−event Compound InitiatorBegin(pk(s),p,sk,log) || attacker(s).

The log is never used in the protocol model, it only appears
in the tables and in the security events. In this way, we ensure
that the channel binding cbin of the outer protocol is enough
to ensure agreement on all protocol instances.

We observe a minor difference between this query and
definition 2, in that the query only proves agreement on pre-
vious sessions. Agreement on subsequent sessions comes as a
corollary from instance agreement, as a honest participant will
not authenticate attacker-provided parameters in successive
protocol instances.

1) TLS-RSA+SCRAM with Renegotiation and Resumption:
We model agreement at the responder by letting the user
authenticate to the server via the password-based SCRAM
protocol on top of a TLS connection. User authentication can
be performed after any TLS handshake (initial, resumed or
renegotiated) has taken place.

We model dynamic key compromise for all TLS sessions,
by leaking the authenticated encryption keys to the attacker at
the completion of each session. This means that, in practice,
all SCRAM messages can be tampered with by the attacker,
which accounts for a strong attacker model. Furthermore, we
let the user use the same password with the attacker, under

the condition that the attacker salt differs from the salt of the
honest peers.

ProVerif can prove agreement at the responder at the end
of each SCRAM instance, which shows that, in isolation,
SCRAM provides user authentication, even when the same
password is used with the attacker.

Compound authentication of TLS-RSA+SCRAM relies on
the use of the tls-unique channel binding in SCRAM.
However, we find that this goal fails when TLS session
resumption is enabled. ProVerif finds an attack in accordance
with the results of [16]: at the end of the second (resumption)
handshake, the channel bindings for client and server are
synchronized, hence the attacker can forward the SCRAM
messages between server and client, with the result of authen-
ticating as the user u to the server.

We patch the TLS model to implement the extended master
secret derivation of Section IV-A. For this model, ProVerif is
able to prove compound authentication. Indeed, the addition
of the session hash into the master secret fixes tls-unique
and makes it an adequate channel binding for SCRAM over
TLS, thwarting the channel synchronization attack.

2) SSH-USERAUTH with Re-keying: We model the SSH
user authentication protocol on top of the SSH key exchange
protocol. In our model, the key exchange protocol can be
run several times (for re-keying) but the user authentication
protocol is run only once after the first key exchange: this is
in conformance to the standard, which prescribes to ignore any
further user authentication request after the first successful one,
requested as a service at the end of the first key exchange. After
each key exchange, the attacker may compromise the session
and obtain its keys and exchange hash.

For this protocol, we are interested in two kinds of com-
pound authentication: the first is about successive instances of
the key exchange protocol itself; the second is between the
key exchange protocol and the user authentication one.

As anticipated by the attack depicted in figure 7, SSH does
not satisfy compound authentication for arbitrary sequences
of key exchange if the first authenticated encryption keys and
exchange hash are compromised. In this setting, ProVerif finds
the attacks and reports the authentication property failure.

We proposed a fix that consists in replacing the SSH ex-
change hash with a cumulative hash that binds all relevant data
of the current instance to the cumulative hash of the previous
instance. In proposing this fix, we also claimed that: (i) keeping
sid becomes unnecessary, as the cumulative hash provides a
stronger binding; and (ii) the extra key confirmation messages
become unnecessary, since now all agreement information
is contained within the cumulative hash, which is explicitly
agreed upon. We implement our fix in the SSH ProVerif model,
and obtain a proof of key exchange compound authentication,
which formally validates our proposed protocol fix.

With respect to compound authentication between key
exchange and user authentication, ProVerif can prove that this
property holds, even when the cumulative hash is not used.
Restricting user authentication to happen after the first key
exchange avoids the key exchange channel binding problem,
and hence thwarts the attack.
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TABLE I. VERIFICATION SUMMARY

Model (with session secret compromise) Session Sync Initiator agr. Responder agr. Compound auth. Verification time
SSH-USERAUTH+Rekey None Yes1 Yes No / Yes2 1.9s
SSH-USERAUTH+Rekey (cumulative hash) None Yes3 Yes Yes / Yes2 0.6s
TLS-RSA+Renego+Resume sid,ms, cr, sr Yes N/A N/A 1.3s
TLS-RSA+Renego+Resume+SCRAM sid,ms, cr, sr Yes Yes No4 15.6s
TLS-RSA+Renego+Resume+SCRAM (session hash) None Yes Yes Yes 21.6s

1After explicit key confirmation 2Key exchange / User authentication 3With no need for explicit key confirmation 4Triple handshake; SCRAM impersonation

E. Summary of Analyzed Models and Properties

Table I summarizes the 20 protocol variants and authentica-
tion properties examples that have been discussed and analyzed
with ProVerif in this section. All reported models take into
account static credential compromise and dynamic session
secret compromise, by explicitly leaking the session secret to
the attacker at the end of a successful protocol instance. The
table reports, for each protocol model, a synthetic comment on
the analyzed security properties and, in the last column, the
ProVerif verification time on a 2.7 GHz Intel Core i7 machine
with 8GB of RAM running a Unix operating system. All our
ProVerif scripts are available online.2

In the first row, we find that the SSH key exchange with
user authentication is not vulnerable to channel synchroniza-
tion when known DH groups are used and public values are
validated. The protocol has no initiator or responder agreement
flaws, albeit we observe that an extra key confirmation step
is necessary to get initiator agreement on the session secret.
Moreover, while compound authentication of key exchange
and user authentication is sound, ProVerif finds an attack on
the compound authentication of sequences of key exchanges,
where an attacker compromising the first session secret can let
the key exchange history mismatch at user and host.

The effects of our proposed cumulative hash fix for SSH
are summarized in the second row, which shows that using the
cumulative hash fixes compound authentication for sequences
of key exchanges, and furthermore makes the extra key con-
firmation step superfluous.

TLS-RSA with session resumption and renegotiation is
summarized at the third row. As discussed in [16], the protocol
is vulnerable to channel synchronization on many relevant
parameters, notably the shared secret. On this model we
also analyze basic agreement at the initiator, which can be
showed to hold even without the presence of the mandatory RI
extension, as this agreement is a property local to the current
handshake instance.

We move our analysis to the combination TLS-
RSA+SCRAM (fourth row), where we find the same TLS-level
issues such as channel synchronization, and where the analysis
of compound authentication properties finds two instances of a
family of attacks. The first instance is a triple handshake attack;
the second instance involves two TLS handshakes followed by
a run of the SCRAM protocol.

We formally evaluate the validity of the proposed session
hash in the fifth row, where we observe that both channel
synchronization and compound authentication flaws are fixed.

2http://prosecco.inria.fr/projects/channelbindings

VI. RELATED WORK

Man-in-the-middle attacks that break authentication have
been documented both against well-known academic security
protocols such as Needham-Schroeder [30] and against widely
used ones such as PEAP [1] and TLS renegotiation [3], [4],
[16]. The work in this paper is closely related to and inspired
by the triple handshake attacks on TLS [16]. However, most
of these attacks were found by hand, whereas we aim to find
them systematically by formal analysis.

Several works have performed rigorous analysis of widely
used key exchange protocols, both in the symbolic setting
(e.g. [41], [42] for TLS, [43], [38], [44] for SSH, [45] for
IKEv2) and in the computational setting (e.g. [46], [47],
[48], [49] for TLS, [50], [51] for SSH). We observe that
none of the formal analysis works above takes into account
the problem of compound authentication, neither by means
of what channel bindings to expose to outer protocols, nor
by means of the interaction between several instances and
modes of the same protocol. Furthermore, with the exception
of [46], due to the complexity of the analyzed protocols, no
previous work performs a global analysis encompassing at
the same time features such as re-keying, renegotiation and
resumption, often necessary to mount the man-in-the-middle
attacks discussed in this paper. In our work, we complement
previous analysis results by providing a formal model for
compound authentication that can be automatically verified in
the symbolic setting.

A separate line of work concerns safe protocol composi-
tion [52], [53], [54], for instance, for protocol instances that
are nested within each other or run in parallel. These works
aim at ensuring that the individual security of each protocol
is preserved even when it runs within or alongside other
protocols. In contrast, these works do not consider the problem
of obtaining stronger compound authentication properties by
the composition of the protocols. We present the first formal
protocol models and systematic analysis for such properties.

VII. CONCLUSIONS

Compound authentication protocols present a challenging
but rewarding target for formal analysis. While it may be
possible to analyze specific configurations of these protocols
by hand, the complex multi-protocol attacks described in this
paper show that automation is direly needed both to find
new attacks and to evaluate their countermeasures against
strong attackers. We have made a first attempt towards the
automated analysis of such protocols. Our 20 models of various
combinations of TLS, SSH, and SASL are detailed and precise
and we are able to find both known and new man-in-the-
middle attacks on various channel binding proposals, as well as
evaluate the new proposals presented in this paper. Our models
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are far from complete, but they already indicate that this is a
fruitful direction for future research.
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