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Motivation

. . . in the beginning there was miTLS.

• implementation of TLS in F?

• various nice guarantees:

• constant-time code
• memory safe
• functionally correct

• “cryptographically verified” - proof in code?
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How are they doing that?
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Our Contributions

Make it easier to do:

• modular composed proofs
• key composition
• hybrid arguments
• (partially) machine-checkable proofs

Possible applications:

• TLS
• Messaging
• Multi-Instance
• F?, other proof assistants
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Related Work

• Universal Composability ([C01])
• Abstract- and Constructive Crypto ([MR11],[M11])
• “The Joy of Cryptography” (Rosulek)
• EasyCrypt ([BGHB11])
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Packages - Security Games

IND-CPAb
e

GEN()
assert k = ⊥

k ← e.KGen(1n)

return ()

ENC(m)
assert k 6= ⊥

if b = 0 then

c ← e.Enc(k,m)

else

c ← e.Enc(k, 0|m|)

return c

• a package contains oracle
descriptions and their state

• it provides these oracles for
other algorithms to use

• packages are composable.

GEN
ENC
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Packages - Reductions

R
GEN()

. . .

ENC(m)

. . .

y ← EVAL(x)
. . .

AIND-CPAAIND-CPA

AIND-CPAAIND-CPA

GEN()

. . .

EVAL(x)

. . .

PRFb
f

GEN
ENC

GEN
ENC

GEN()
EVAL(x)
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Packages - Reductions

A R PRFb
f

GEN
ENC

GEN
ENC

GEN
EVAL

GEN
EVAL

Packages . . .

• contain oracle descriptions and state,
• can provide oracles to other packages,
• and can call oracles provided by other packages.
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Example I

Reducing IND-CPAe to PRFf
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Overview

Proof Goal: �� ��IND-CPA0
e

ε1(AIND-CPA)
≈

�� ��IND-CPA1
e

Assumption: �� ��PRF0
f

ε2(APRF)
≈

�� ��PRF1
f

Concrete Security
Relate ε1(·) to ε2(·) in two steps:

1. Simulation correctness
2. Applying assumptions
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Step 1: Simulation Correctness

To prove: Perfect Indistinguishability

�� ��IND-CPA0
e ≡

�� ��R → �� ��PRF0
f

and

≈

ε2
(�� ��AIND-CPA →

�� ��R ) ≈

�� ��IND-CPA1
e ≡

�� ��R → �� ��PRF1
f
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Step 2: Applying Assumptions
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General Proof Pattern

�� ��IND-CPA0
e ≡

�� ��R → �� ��PRF0
f

and

≈

ε2
(�� ��AIND-CPA →

�� ��R︸ ︷︷ ︸
APRF

) ≈

�� ��IND-CPA1
e ≡

�� ��R → �� ��PRF1
f

Some notes:
• graphs have precise meaning
• an inline notation exists
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Example II

Key Composition
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Overview

Proof Goal: �� ��SN0
p

ε1(ASN)
≈

�� ��SN1
p , where SN (security notion) could be PKE-CCA

Common Pattern

R≡SNb
p

Keyingb
king

Keyedb
ked

?KEY

GEN/SET

GET

where Keying could be KEM-CCA and Keyed could be DEM-CCA.
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Assumptions

Keying Assumption

Keying0
king

KEY

ε2(AKeying)
≈

Keying1
king

KEY

SET

GENSET GEN

GET

GET

Keyed Assumption

Keyed0
ked

KEY ε3(AKeyed)
≈

Keyed1
ked

KEY
GEN GEN

GET GET
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Applying the Assumptions

R

Keying0
king

Keying1
king

Keyed0
ked

Keyed1
ked

KEY

SET

GEN

GET

KEY

GEN

GET

Keying0
kingKeying1
king SETGEN

Keyed0
kedKeyed1
ked GET

�� ��RKeying

�� ��RKeyed

ε1(ASN) =

ε2(
�� ��ASN →

�� ��RKeying ) + ε3(
�� ��ASN →

�� ��RKeyed )
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Observations & Conclusions

• extension of BR-style “game-hopping”
• packaging of code and state.

• useful for composed protocols (TLS)
• enables key composition (Messaging)
• less useful for . . .

• implications (AE =⇒ IND-CCA)
• smaller proofs

R PRF0→1
f

R

Keyingb
king

Keyedb′
ked

KEYKEY

GEN/SET

GET
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Work in Progress

• TLS 1.3 Key Schedule (for miTLS)
• Multi-Party Computation (Yao’s Garbled Circuits)
• Protocol Design (Secret Handshake 2)
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